Metamath Proof Explorer


Theorem submss

Description: Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis submss.b B = Base M
Assertion submss S SubMnd M S B

Proof

Step Hyp Ref Expression
1 submss.b B = Base M
2 submrcl S SubMnd M M Mnd
3 eqid 0 M = 0 M
4 eqid M 𝑠 S = M 𝑠 S
5 1 3 4 issubm2 M Mnd S SubMnd M S B 0 M S M 𝑠 S Mnd
6 2 5 syl S SubMnd M S SubMnd M S B 0 M S M 𝑠 S Mnd
7 6 ibi S SubMnd M S B 0 M S M 𝑠 S Mnd
8 7 simp1d S SubMnd M S B