Metamath Proof Explorer


Theorem submtmd

Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypothesis subgtgp.h H = G 𝑠 S
Assertion submtmd G TopMnd S SubMnd G H TopMnd

Proof

Step Hyp Ref Expression
1 subgtgp.h H = G 𝑠 S
2 1 submmnd S SubMnd G H Mnd
3 2 adantl G TopMnd S SubMnd G H Mnd
4 tmdtps G TopMnd G TopSp
5 resstps G TopSp S SubMnd G G 𝑠 S TopSp
6 4 5 sylan G TopMnd S SubMnd G G 𝑠 S TopSp
7 1 6 eqeltrid G TopMnd S SubMnd G H TopSp
8 eqid Base H = Base H
9 eqid + H = + H
10 eqid + 𝑓 H = + 𝑓 H
11 8 9 10 plusffval + 𝑓 H = x Base H , y Base H x + H y
12 1 submbas S SubMnd G S = Base H
13 12 adantl G TopMnd S SubMnd G S = Base H
14 eqid + G = + G
15 1 14 ressplusg S SubMnd G + G = + H
16 15 adantl G TopMnd S SubMnd G + G = + H
17 16 oveqd G TopMnd S SubMnd G x + G y = x + H y
18 13 13 17 mpoeq123dv G TopMnd S SubMnd G x S , y S x + G y = x Base H , y Base H x + H y
19 11 18 eqtr4id G TopMnd S SubMnd G + 𝑓 H = x S , y S x + G y
20 eqid TopOpen G 𝑡 S = TopOpen G 𝑡 S
21 eqid TopOpen G = TopOpen G
22 eqid Base G = Base G
23 21 22 tmdtopon G TopMnd TopOpen G TopOn Base G
24 23 adantr G TopMnd S SubMnd G TopOpen G TopOn Base G
25 22 submss S SubMnd G S Base G
26 25 adantl G TopMnd S SubMnd G S Base G
27 eqid + 𝑓 G = + 𝑓 G
28 22 14 27 plusffval + 𝑓 G = x Base G , y Base G x + G y
29 21 27 tmdcn G TopMnd + 𝑓 G TopOpen G × t TopOpen G Cn TopOpen G
30 28 29 eqeltrrid G TopMnd x Base G , y Base G x + G y TopOpen G × t TopOpen G Cn TopOpen G
31 30 adantr G TopMnd S SubMnd G x Base G , y Base G x + G y TopOpen G × t TopOpen G Cn TopOpen G
32 20 24 26 20 24 26 31 cnmpt2res G TopMnd S SubMnd G x S , y S x + G y TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G
33 19 32 eqeltrd G TopMnd S SubMnd G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G
34 8 10 mndplusf H Mnd + 𝑓 H : Base H × Base H Base H
35 frn + 𝑓 H : Base H × Base H Base H ran + 𝑓 H Base H
36 3 34 35 3syl G TopMnd S SubMnd G ran + 𝑓 H Base H
37 36 13 sseqtrrd G TopMnd S SubMnd G ran + 𝑓 H S
38 cnrest2 TopOpen G TopOn Base G ran + 𝑓 H S S Base G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
39 24 37 26 38 syl3anc G TopMnd S SubMnd G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
40 33 39 mpbid G TopMnd S SubMnd G + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
41 1 21 resstopn TopOpen G 𝑡 S = TopOpen H
42 10 41 istmd H TopMnd H Mnd H TopSp + 𝑓 H TopOpen G 𝑡 S × t TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
43 3 7 40 42 syl3anbrc G TopMnd S SubMnd G H TopMnd