Metamath Proof Explorer


Theorem submul2

Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007)

Ref Expression
Assertion submul2 A B C A B C = A + B C

Proof

Step Hyp Ref Expression
1 mulneg2 B C B C = B C
2 1 adantl A B C B C = B C
3 2 oveq2d A B C A + B C = A + B C
4 mulcl B C B C
5 negsub A B C A + B C = A B C
6 4 5 sylan2 A B C A + B C = A B C
7 3 6 eqtr2d A B C A B C = A + B C
8 7 3impb A B C A B C = A + B C