Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subne0ad
Metamath Proof Explorer
Description: If the difference of two complex numbers is nonzero, they are unequal.
Converse of subne0d . Contrapositive of subeq0bd . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
negidd.1
⊢ φ → A ∈ ℂ
pncand.2
⊢ φ → B ∈ ℂ
subne0ad.3
⊢ φ → A − B ≠ 0
Assertion
subne0ad
⊢ φ → A ≠ B
Proof
Step
Hyp
Ref
Expression
1
negidd.1
⊢ φ → A ∈ ℂ
2
pncand.2
⊢ φ → B ∈ ℂ
3
subne0ad.3
⊢ φ → A − B ≠ 0
4
1 2
subeq0ad
⊢ φ → A − B = 0 ↔ A = B
5
4
necon3bid
⊢ φ → A − B ≠ 0 ↔ A ≠ B
6
3 5
mpbid
⊢ φ → A ≠ B