Database REAL AND COMPLEX NUMBERS Real and complex numbers - basic operations Subtraction subneintr2d  
				
		 
		
			
		 
		Description:   Introducing subtraction on both sides of a statement of inequality.
         Contrapositive of subcan2d  .  (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						negidd.1    ⊢   φ   →   A  ∈   ℂ          
					 
					
						pncand.2    ⊢   φ   →   B  ∈   ℂ          
					 
					
						subaddd.3    ⊢   φ   →   C  ∈   ℂ          
					 
					
						subneintr2d.4    ⊢   φ   →   A  ≠  B         
					 
				
					Assertion 
					subneintr2d    ⊢   φ   →   A  −  C ≠  B  −  C        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							negidd.1   ⊢   φ   →   A  ∈   ℂ          
						
							2 
								
							 
							pncand.2   ⊢   φ   →   B  ∈   ℂ          
						
							3 
								
							 
							subaddd.3   ⊢   φ   →   C  ∈   ℂ          
						
							4 
								
							 
							subneintr2d.4   ⊢   φ   →   A  ≠  B         
						
							5 
								1  2  3 
							 
							subcan2ad   ⊢   φ   →    A  −  C =  B  −  C   ↔   A  =  B          
						
							6 
								5 
							 
							necon3bid   ⊢   φ   →    A  −  C ≠  B  −  C   ↔   A  ≠  B          
						
							7 
								4  6 
							 
							mpbird   ⊢   φ   →   A  −  C ≠  B  −  C