Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subneintr2d
Metamath Proof Explorer
Description: Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
negidd.1
⊢ φ → A ∈ ℂ
pncand.2
⊢ φ → B ∈ ℂ
subaddd.3
⊢ φ → C ∈ ℂ
subneintr2d.4
⊢ φ → A ≠ B
Assertion
subneintr2d
⊢ φ → A − C ≠ B − C
Proof
Step
Hyp
Ref
Expression
1
negidd.1
⊢ φ → A ∈ ℂ
2
pncand.2
⊢ φ → B ∈ ℂ
3
subaddd.3
⊢ φ → C ∈ ℂ
4
subneintr2d.4
⊢ φ → A ≠ B
5
1 2 3
subcan2ad
⊢ φ → A − C = B − C ↔ A = B
6
5
necon3bid
⊢ φ → A − C ≠ B − C ↔ A ≠ B
7
4 6
mpbird
⊢ φ → A − C ≠ B − C