Metamath Proof Explorer


Theorem subneintrd

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
subneintrd.4 φ B C
Assertion subneintrd φ A B A C

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 subneintrd.4 φ B C
5 1 2 3 subcanad φ A B = A C B = C
6 5 necon3bid φ A B A C B C
7 4 6 mpbird φ A B A C