Metamath Proof Explorer
		
		
		
		Description:  Introducing subtraction on both sides of a statement of inequality.
         Contrapositive of subcand .  (Contributed by David Moews, 28-Feb-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | negidd.1 |  | 
					
						|  |  | pncand.2 |  | 
					
						|  |  | subaddd.3 |  | 
					
						|  |  | subneintrd.4 |  | 
				
					|  | Assertion | subneintrd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negidd.1 |  | 
						
							| 2 |  | pncand.2 |  | 
						
							| 3 |  | subaddd.3 |  | 
						
							| 4 |  | subneintrd.4 |  | 
						
							| 5 | 1 2 3 | subcanad |  | 
						
							| 6 | 5 | necon3bid |  | 
						
							| 7 | 4 6 | mpbird |  |