Metamath Proof Explorer


Theorem subopnmbl

Description: Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypothesis subopnmbl.1 J = topGen ran . 𝑡 A
Assertion subopnmbl A dom vol B J B dom vol

Proof

Step Hyp Ref Expression
1 subopnmbl.1 J = topGen ran . 𝑡 A
2 1 eleq2i B J B topGen ran . 𝑡 A
3 retop topGen ran . Top
4 elrest topGen ran . Top A dom vol B topGen ran . 𝑡 A x topGen ran . B = x A
5 3 4 mpan A dom vol B topGen ran . 𝑡 A x topGen ran . B = x A
6 2 5 syl5bb A dom vol B J x topGen ran . B = x A
7 opnmbl x topGen ran . x dom vol
8 id A dom vol A dom vol
9 inmbl x dom vol A dom vol x A dom vol
10 7 8 9 syl2anr A dom vol x topGen ran . x A dom vol
11 eleq1a x A dom vol B = x A B dom vol
12 10 11 syl A dom vol x topGen ran . B = x A B dom vol
13 12 rexlimdva A dom vol x topGen ran . B = x A B dom vol
14 6 13 sylbid A dom vol B J B dom vol
15 14 imp A dom vol B J B dom vol