Metamath Proof Explorer


Theorem subrdom

Description: A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses subrdom.1 φ R Domn
subrdom.2 φ S SubRing R
Assertion subrdom φ R 𝑠 S Domn

Proof

Step Hyp Ref Expression
1 subrdom.1 φ R Domn
2 subrdom.2 φ S SubRing R
3 domnnzr R Domn R NzRing
4 1 3 syl φ R NzRing
5 eqid R 𝑠 S = R 𝑠 S
6 5 subrgnzr R NzRing S SubRing R R 𝑠 S NzRing
7 4 2 6 syl2anc φ R 𝑠 S NzRing
8 1 ad3antrrr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S R Domn
9 eqid Base R = Base R
10 9 subrgss S SubRing R S Base R
11 2 10 syl φ S Base R
12 11 ad3antrrr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S S Base R
13 simpllr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x Base R 𝑠 S
14 5 9 ressbas2 S Base R S = Base R 𝑠 S
15 11 14 syl φ S = Base R 𝑠 S
16 15 ad3antrrr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S S = Base R 𝑠 S
17 13 16 eleqtrrd φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x S
18 12 17 sseldd φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x Base R
19 simplr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S y Base R 𝑠 S
20 19 16 eleqtrrd φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S y S
21 12 20 sseldd φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S y Base R
22 simpr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S
23 2 elexd φ S V
24 eqid R = R
25 5 24 ressmulr S V R = R 𝑠 S
26 23 25 syl φ R = R 𝑠 S
27 26 oveqd φ x R y = x R 𝑠 S y
28 27 ad3antrrr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x R y = x R 𝑠 S y
29 subrgrcl S SubRing R R Ring
30 ringmnd R Ring R Mnd
31 2 29 30 3syl φ R Mnd
32 subrgsubg S SubRing R S SubGrp R
33 eqid 0 R = 0 R
34 33 subg0cl S SubGrp R 0 R S
35 2 32 34 3syl φ 0 R S
36 5 9 33 ress0g R Mnd 0 R S S Base R 0 R = 0 R 𝑠 S
37 31 35 11 36 syl3anc φ 0 R = 0 R 𝑠 S
38 37 ad3antrrr φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S 0 R = 0 R 𝑠 S
39 22 28 38 3eqtr4d φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x R y = 0 R
40 9 24 33 domneq0 R Domn x Base R y Base R x R y = 0 R x = 0 R y = 0 R
41 40 biimpa R Domn x Base R y Base R x R y = 0 R x = 0 R y = 0 R
42 8 18 21 39 41 syl31anc φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R y = 0 R
43 38 eqeq2d φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R x = 0 R 𝑠 S
44 38 eqeq2d φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S y = 0 R y = 0 R 𝑠 S
45 43 44 orbi12d φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R y = 0 R x = 0 R 𝑠 S y = 0 R 𝑠 S
46 42 45 mpbid φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R 𝑠 S y = 0 R 𝑠 S
47 46 ex φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R 𝑠 S y = 0 R 𝑠 S
48 47 anasss φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R 𝑠 S y = 0 R 𝑠 S
49 48 ralrimivva φ x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R 𝑠 S y = 0 R 𝑠 S
50 eqid Base R 𝑠 S = Base R 𝑠 S
51 eqid R 𝑠 S = R 𝑠 S
52 eqid 0 R 𝑠 S = 0 R 𝑠 S
53 50 51 52 isdomn R 𝑠 S Domn R 𝑠 S NzRing x Base R 𝑠 S y Base R 𝑠 S x R 𝑠 S y = 0 R 𝑠 S x = 0 R 𝑠 S y = 0 R 𝑠 S
54 7 49 53 sylanbrc φ R 𝑠 S Domn