Step |
Hyp |
Ref |
Expression |
1 |
|
subrdom.1 |
|
2 |
|
subrdom.2 |
|
3 |
|
domnnzr |
|
4 |
1 3
|
syl |
|
5 |
|
eqid |
|
6 |
5
|
subrgnzr |
|
7 |
4 2 6
|
syl2anc |
|
8 |
1
|
ad3antrrr |
|
9 |
|
eqid |
|
10 |
9
|
subrgss |
|
11 |
2 10
|
syl |
|
12 |
11
|
ad3antrrr |
|
13 |
|
simpllr |
|
14 |
5 9
|
ressbas2 |
|
15 |
11 14
|
syl |
|
16 |
15
|
ad3antrrr |
|
17 |
13 16
|
eleqtrrd |
|
18 |
12 17
|
sseldd |
|
19 |
|
simplr |
|
20 |
19 16
|
eleqtrrd |
|
21 |
12 20
|
sseldd |
|
22 |
|
simpr |
|
23 |
2
|
elexd |
|
24 |
|
eqid |
|
25 |
5 24
|
ressmulr |
|
26 |
23 25
|
syl |
|
27 |
26
|
oveqd |
|
28 |
27
|
ad3antrrr |
|
29 |
|
subrgrcl |
|
30 |
|
ringmnd |
|
31 |
2 29 30
|
3syl |
|
32 |
|
subrgsubg |
|
33 |
|
eqid |
|
34 |
33
|
subg0cl |
|
35 |
2 32 34
|
3syl |
|
36 |
5 9 33
|
ress0g |
|
37 |
31 35 11 36
|
syl3anc |
|
38 |
37
|
ad3antrrr |
|
39 |
22 28 38
|
3eqtr4d |
|
40 |
9 24 33
|
domneq0 |
|
41 |
40
|
biimpa |
|
42 |
8 18 21 39 41
|
syl31anc |
|
43 |
38
|
eqeq2d |
|
44 |
38
|
eqeq2d |
|
45 |
43 44
|
orbi12d |
|
46 |
42 45
|
mpbid |
|
47 |
46
|
ex |
|
48 |
47
|
anasss |
|
49 |
48
|
ralrimivva |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
50 51 52
|
isdomn |
|
54 |
7 49 53
|
sylanbrc |
|