Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
subrecd
Next ⟩
subrec
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrecd
Description:
Subtraction of reciprocals.
(Contributed by
Scott Fenton
, 9-Jan-2017)
Ref
Expression
Hypotheses
subrecd.1
⊢
φ
→
A
∈
ℂ
subrecd.2
⊢
φ
→
B
∈
ℂ
subrecd.3
⊢
φ
→
A
≠
0
subrecd.4
⊢
φ
→
B
≠
0
Assertion
subrecd
⊢
φ
→
1
A
−
1
B
=
B
−
A
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
subrecd.1
⊢
φ
→
A
∈
ℂ
2
subrecd.2
⊢
φ
→
B
∈
ℂ
3
subrecd.3
⊢
φ
→
A
≠
0
4
subrecd.4
⊢
φ
→
B
≠
0
5
1cnd
⊢
φ
→
1
∈
ℂ
6
5
1
5
2
3
4
divsubdivd
⊢
φ
→
1
A
−
1
B
=
1
⁢
B
−
1
⁢
A
A
⁢
B
7
2
mullidd
⊢
φ
→
1
⁢
B
=
B
8
1
mullidd
⊢
φ
→
1
⁢
A
=
A
9
7
8
oveq12d
⊢
φ
→
1
⁢
B
−
1
⁢
A
=
B
−
A
10
9
oveq1d
⊢
φ
→
1
⁢
B
−
1
⁢
A
A
⁢
B
=
B
−
A
A
⁢
B
11
6
10
eqtrd
⊢
φ
→
1
A
−
1
B
=
B
−
A
A
⁢
B