Metamath Proof Explorer


Theorem subrecd

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Hypotheses subrecd.1 φ A
subrecd.2 φ B
subrecd.3 φ A 0
subrecd.4 φ B 0
Assertion subrecd φ 1 A 1 B = B A A B

Proof

Step Hyp Ref Expression
1 subrecd.1 φ A
2 subrecd.2 φ B
3 subrecd.3 φ A 0
4 subrecd.4 φ B 0
5 1cnd φ 1
6 5 1 5 2 3 4 divsubdivd φ 1 A 1 B = 1 B 1 A A B
7 2 mullidd φ 1 B = B
8 1 mullidd φ 1 A = A
9 7 8 oveq12d φ 1 B 1 A = B A
10 9 oveq1d φ 1 B 1 A A B = B A A B
11 6 10 eqtrd φ 1 A 1 B = B A A B