Metamath Proof Explorer


Theorem subrecd

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Hypotheses subrecd.1 φ A
subrecd.2 φ B
subrecd.3 φ A 0
subrecd.4 φ B 0
Assertion subrecd φ 1 A 1 B = B A A B

Proof

Step Hyp Ref Expression
1 subrecd.1 φ A
2 subrecd.2 φ B
3 subrecd.3 φ A 0
4 subrecd.4 φ B 0
5 subrec A A 0 B B 0 1 A 1 B = B A A B
6 1 3 2 4 5 syl22anc φ 1 A 1 B = B A A B