Metamath Proof Explorer


Theorem subrfld

Description: A subring of a field is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses subrfld.1 φ R Field
subrfld.2 φ S SubRing R
Assertion subrfld φ R 𝑠 S IDomn

Proof

Step Hyp Ref Expression
1 subrfld.1 φ R Field
2 subrfld.2 φ S SubRing R
3 fldidom R Field R IDomn
4 1 3 syl φ R IDomn
5 4 2 subridom φ R 𝑠 S IDomn