Step |
Hyp |
Ref |
Expression |
1 |
|
subrg1.1 |
|
2 |
|
subrg1.2 |
|
3 |
|
eqid |
|
4 |
3
|
subrg1cl |
|
5 |
1
|
subrgbas |
|
6 |
4 5
|
eleqtrd |
|
7 |
|
eqid |
|
8 |
7
|
subrgss |
|
9 |
5 8
|
eqsstrrd |
|
10 |
9
|
sselda |
|
11 |
|
subrgrcl |
|
12 |
|
eqid |
|
13 |
7 12 3
|
ringidmlem |
|
14 |
11 13
|
sylan |
|
15 |
1 12
|
ressmulr |
|
16 |
15
|
oveqd |
|
17 |
16
|
eqeq1d |
|
18 |
15
|
oveqd |
|
19 |
18
|
eqeq1d |
|
20 |
17 19
|
anbi12d |
|
21 |
20
|
biimpa |
|
22 |
14 21
|
syldan |
|
23 |
10 22
|
syldan |
|
24 |
23
|
ralrimiva |
|
25 |
1
|
subrgring |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
26 27 28
|
isringid |
|
30 |
25 29
|
syl |
|
31 |
6 24 30
|
mpbi2and |
|
32 |
2 31
|
eqtr4id |
|