Metamath Proof Explorer


Theorem subrg1ascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p P = Poly 1 R
subrg1ascl.a A = algSc P
subrg1ascl.h H = R 𝑠 T
subrg1ascl.u U = Poly 1 H
subrg1ascl.r φ T SubRing R
subrg1ascl.c C = algSc U
Assertion subrg1ascl φ C = A T

Proof

Step Hyp Ref Expression
1 subrg1ascl.p P = Poly 1 R
2 subrg1ascl.a A = algSc P
3 subrg1ascl.h H = R 𝑠 T
4 subrg1ascl.u U = Poly 1 H
5 subrg1ascl.r φ T SubRing R
6 subrg1ascl.c C = algSc U
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 1 2 ply1ascl A = algSc 1 𝑜 mPoly R
9 eqid 1 𝑜 mPoly H = 1 𝑜 mPoly H
10 1on 1 𝑜 On
11 10 a1i φ 1 𝑜 On
12 4 6 ply1ascl C = algSc 1 𝑜 mPoly H
13 7 8 3 9 11 5 12 subrgascl φ C = A T