Metamath Proof Explorer


Theorem subrg1asclcl

Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p P = Poly 1 R
subrg1ascl.a A = algSc P
subrg1ascl.h H = R 𝑠 T
subrg1ascl.u U = Poly 1 H
subrg1ascl.r φ T SubRing R
subrg1asclcl.b B = Base U
subrg1asclcl.k K = Base R
subrg1asclcl.x φ X K
Assertion subrg1asclcl φ A X B X T

Proof

Step Hyp Ref Expression
1 subrg1ascl.p P = Poly 1 R
2 subrg1ascl.a A = algSc P
3 subrg1ascl.h H = R 𝑠 T
4 subrg1ascl.u U = Poly 1 H
5 subrg1ascl.r φ T SubRing R
6 subrg1asclcl.b B = Base U
7 subrg1asclcl.k K = Base R
8 subrg1asclcl.x φ X K
9 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
10 1 2 ply1ascl A = algSc 1 𝑜 mPoly R
11 eqid 1 𝑜 mPoly H = 1 𝑜 mPoly H
12 1on 1 𝑜 On
13 12 a1i φ 1 𝑜 On
14 eqid PwSer 1 H = PwSer 1 H
15 4 14 6 ply1bas B = Base 1 𝑜 mPoly H
16 9 10 3 11 13 5 15 7 8 subrgasclcl φ A X B X T