Metamath Proof Explorer


Theorem subrgacl

Description: A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subrgacl.p + ˙ = + R
Assertion subrgacl A SubRing R X A Y A X + ˙ Y A

Proof

Step Hyp Ref Expression
1 subrgacl.p + ˙ = + R
2 subrgsubg A SubRing R A SubGrp R
3 1 subgcl A SubGrp R X A Y A X + ˙ Y A
4 2 3 syl3an1 A SubRing R X A Y A X + ˙ Y A