Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
subrgacl
Next ⟩
subrgmcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrgacl
Description:
A subring is closed under addition.
(Contributed by
Mario Carneiro
, 2-Dec-2014)
Ref
Expression
Hypothesis
subrgacl.p
⊢
+
˙
=
+
R
Assertion
subrgacl
⊢
A
∈
SubRing
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A
Proof
Step
Hyp
Ref
Expression
1
subrgacl.p
⊢
+
˙
=
+
R
2
subrgsubg
⊢
A
∈
SubRing
⁡
R
→
A
∈
SubGrp
⁡
R
3
1
subgcl
⊢
A
∈
SubGrp
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A
4
2
3
syl3an1
⊢
A
∈
SubRing
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A