| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgascl.p |  | 
						
							| 2 |  | subrgascl.a |  | 
						
							| 3 |  | subrgascl.h |  | 
						
							| 4 |  | subrgascl.u |  | 
						
							| 5 |  | subrgascl.i |  | 
						
							| 6 |  | subrgascl.r |  | 
						
							| 7 |  | subrgasclcl.b |  | 
						
							| 8 |  | subrgasclcl.k |  | 
						
							| 9 |  | subrgasclcl.x |  | 
						
							| 10 |  | iftrue |  | 
						
							| 11 | 10 | eleq1d |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | subrgrcl |  | 
						
							| 18 | 6 17 | syl |  | 
						
							| 19 | 1 14 16 8 2 5 18 9 | mplascl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 3 | subrgring |  | 
						
							| 22 | 6 21 | syl |  | 
						
							| 23 | 12 4 7 5 22 | mplsubrg |  | 
						
							| 24 | 15 | subrgss |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | sselda |  | 
						
							| 27 | 20 26 | eqeltrrd |  | 
						
							| 28 | 12 13 14 15 27 | psrelbas |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 | fmpt |  | 
						
							| 31 | 28 30 | sylibr |  | 
						
							| 32 | 5 | adantr |  | 
						
							| 33 | 14 | psrbag0 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 11 31 34 | rspcdva |  | 
						
							| 36 | 3 | subrgbas |  | 
						
							| 37 | 6 36 | syl |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 35 38 | eleqtrrd |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 1 2 3 4 5 6 40 | subrgascl |  | 
						
							| 42 | 41 | fveq1d |  | 
						
							| 43 |  | fvres |  | 
						
							| 44 | 42 43 | sylan9eq |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 4 | mplring |  | 
						
							| 47 | 4 | mpllmod |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 40 45 46 47 48 7 | asclf |  | 
						
							| 50 | 5 22 49 | syl2anc |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 4 5 22 | mplsca |  | 
						
							| 53 | 52 | fveq2d |  | 
						
							| 54 | 37 53 | eqtrd |  | 
						
							| 55 | 54 | eleq2d |  | 
						
							| 56 | 55 | biimpa |  | 
						
							| 57 | 51 56 | ffvelcdmd |  | 
						
							| 58 | 44 57 | eqeltrrd |  | 
						
							| 59 | 39 58 | impbida |  |