Metamath Proof Explorer


Theorem subrgbas

Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgbas.b S = R 𝑠 A
Assertion subrgbas A SubRing R A = Base S

Proof

Step Hyp Ref Expression
1 subrgbas.b S = R 𝑠 A
2 subrgsubg A SubRing R A SubGrp R
3 1 subgbas A SubGrp R A = Base S
4 2 3 syl A SubRing R A = Base S