Metamath Proof Explorer


Theorem subrgdv

Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrgdv.1 S = R 𝑠 A
subrgdv.2 × ˙ = / r R
subrgdv.3 U = Unit S
subrgdv.4 E = / r S
Assertion subrgdv A SubRing R X A Y U X × ˙ Y = X E Y

Proof

Step Hyp Ref Expression
1 subrgdv.1 S = R 𝑠 A
2 subrgdv.2 × ˙ = / r R
3 subrgdv.3 U = Unit S
4 subrgdv.4 E = / r S
5 eqid inv r R = inv r R
6 eqid inv r S = inv r S
7 1 5 3 6 subrginv A SubRing R Y U inv r R Y = inv r S Y
8 7 3adant2 A SubRing R X A Y U inv r R Y = inv r S Y
9 8 oveq2d A SubRing R X A Y U X R inv r R Y = X R inv r S Y
10 eqid R = R
11 1 10 ressmulr A SubRing R R = S
12 11 3ad2ant1 A SubRing R X A Y U R = S
13 12 oveqd A SubRing R X A Y U X R inv r S Y = X S inv r S Y
14 9 13 eqtrd A SubRing R X A Y U X R inv r R Y = X S inv r S Y
15 eqid Base R = Base R
16 15 subrgss A SubRing R A Base R
17 16 3ad2ant1 A SubRing R X A Y U A Base R
18 simp2 A SubRing R X A Y U X A
19 17 18 sseldd A SubRing R X A Y U X Base R
20 eqid Unit R = Unit R
21 1 20 3 subrguss A SubRing R U Unit R
22 21 3ad2ant1 A SubRing R X A Y U U Unit R
23 simp3 A SubRing R X A Y U Y U
24 22 23 sseldd A SubRing R X A Y U Y Unit R
25 15 10 20 5 2 dvrval X Base R Y Unit R X × ˙ Y = X R inv r R Y
26 19 24 25 syl2anc A SubRing R X A Y U X × ˙ Y = X R inv r R Y
27 1 subrgbas A SubRing R A = Base S
28 27 3ad2ant1 A SubRing R X A Y U A = Base S
29 18 28 eleqtrd A SubRing R X A Y U X Base S
30 eqid Base S = Base S
31 eqid S = S
32 30 31 3 6 4 dvrval X Base S Y U X E Y = X S inv r S Y
33 29 23 32 syl2anc A SubRing R X A Y U X E Y = X S inv r S Y
34 14 26 33 3eqtr4d A SubRing R X A Y U X × ˙ Y = X E Y