Step |
Hyp |
Ref |
Expression |
1 |
|
subrgsubg |
|
2 |
1
|
ssriv |
|
3 |
|
sstr |
|
4 |
2 3
|
mpan2 |
|
5 |
|
subgint |
|
6 |
4 5
|
sylan |
|
7 |
|
ssel2 |
|
8 |
7
|
adantlr |
|
9 |
|
eqid |
|
10 |
9
|
subrg1cl |
|
11 |
8 10
|
syl |
|
12 |
11
|
ralrimiva |
|
13 |
|
fvex |
|
14 |
13
|
elint2 |
|
15 |
12 14
|
sylibr |
|
16 |
8
|
adantlr |
|
17 |
|
simprl |
|
18 |
|
elinti |
|
19 |
18
|
imp |
|
20 |
17 19
|
sylan |
|
21 |
|
simprr |
|
22 |
|
elinti |
|
23 |
22
|
imp |
|
24 |
21 23
|
sylan |
|
25 |
|
eqid |
|
26 |
25
|
subrgmcl |
|
27 |
16 20 24 26
|
syl3anc |
|
28 |
27
|
ralrimiva |
|
29 |
|
ovex |
|
30 |
29
|
elint2 |
|
31 |
28 30
|
sylibr |
|
32 |
31
|
ralrimivva |
|
33 |
|
ssn0 |
|
34 |
|
n0 |
|
35 |
|
subrgrcl |
|
36 |
35
|
exlimiv |
|
37 |
34 36
|
sylbi |
|
38 |
|
eqid |
|
39 |
38 9 25
|
issubrg2 |
|
40 |
33 37 39
|
3syl |
|
41 |
6 15 32 40
|
mpbir3and |
|