| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgsubg |  | 
						
							| 2 | 1 | ssriv |  | 
						
							| 3 |  | sstr |  | 
						
							| 4 | 2 3 | mpan2 |  | 
						
							| 5 |  | subgint |  | 
						
							| 6 | 4 5 | sylan |  | 
						
							| 7 |  | ssel2 |  | 
						
							| 8 | 7 | adantlr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | subrg1cl |  | 
						
							| 11 | 8 10 | syl |  | 
						
							| 12 | 11 | ralrimiva |  | 
						
							| 13 |  | fvex |  | 
						
							| 14 | 13 | elint2 |  | 
						
							| 15 | 12 14 | sylibr |  | 
						
							| 16 | 8 | adantlr |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 |  | elinti |  | 
						
							| 19 | 18 | imp |  | 
						
							| 20 | 17 19 | sylan |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 |  | elinti |  | 
						
							| 23 | 22 | imp |  | 
						
							| 24 | 21 23 | sylan |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | subrgmcl |  | 
						
							| 27 | 16 20 24 26 | syl3anc |  | 
						
							| 28 | 27 | ralrimiva |  | 
						
							| 29 |  | ovex |  | 
						
							| 30 | 29 | elint2 |  | 
						
							| 31 | 28 30 | sylibr |  | 
						
							| 32 | 31 | ralrimivva |  | 
						
							| 33 |  | ssn0 |  | 
						
							| 34 |  | n0 |  | 
						
							| 35 |  | subrgrcl |  | 
						
							| 36 | 35 | exlimiv |  | 
						
							| 37 | 34 36 | sylbi |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 38 9 25 | issubrg2 |  | 
						
							| 40 | 33 37 39 | 3syl |  | 
						
							| 41 | 6 15 32 40 | mpbir3and |  |