Metamath Proof Explorer


Theorem subrgint

Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subrgint S SubRing R S S SubRing R

Proof

Step Hyp Ref Expression
1 subrgsubg r SubRing R r SubGrp R
2 1 ssriv SubRing R SubGrp R
3 sstr S SubRing R SubRing R SubGrp R S SubGrp R
4 2 3 mpan2 S SubRing R S SubGrp R
5 subgint S SubGrp R S S SubGrp R
6 4 5 sylan S SubRing R S S SubGrp R
7 ssel2 S SubRing R r S r SubRing R
8 7 adantlr S SubRing R S r S r SubRing R
9 eqid 1 R = 1 R
10 9 subrg1cl r SubRing R 1 R r
11 8 10 syl S SubRing R S r S 1 R r
12 11 ralrimiva S SubRing R S r S 1 R r
13 fvex 1 R V
14 13 elint2 1 R S r S 1 R r
15 12 14 sylibr S SubRing R S 1 R S
16 8 adantlr S SubRing R S x S y S r S r SubRing R
17 simprl S SubRing R S x S y S x S
18 elinti x S r S x r
19 18 imp x S r S x r
20 17 19 sylan S SubRing R S x S y S r S x r
21 simprr S SubRing R S x S y S y S
22 elinti y S r S y r
23 22 imp y S r S y r
24 21 23 sylan S SubRing R S x S y S r S y r
25 eqid R = R
26 25 subrgmcl r SubRing R x r y r x R y r
27 16 20 24 26 syl3anc S SubRing R S x S y S r S x R y r
28 27 ralrimiva S SubRing R S x S y S r S x R y r
29 ovex x R y V
30 29 elint2 x R y S r S x R y r
31 28 30 sylibr S SubRing R S x S y S x R y S
32 31 ralrimivva S SubRing R S x S y S x R y S
33 ssn0 S SubRing R S SubRing R
34 n0 SubRing R r r SubRing R
35 subrgrcl r SubRing R R Ring
36 35 exlimiv r r SubRing R R Ring
37 34 36 sylbi SubRing R R Ring
38 eqid Base R = Base R
39 38 9 25 issubrg2 R Ring S SubRing R S SubGrp R 1 R S x S y S x R y S
40 33 37 39 3syl S SubRing R S S SubRing R S SubGrp R 1 R S x S y S x R y S
41 6 15 32 40 mpbir3and S SubRing R S S SubRing R