Metamath Proof Explorer


Theorem subrginv

Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrginv.1 S = R 𝑠 A
subrginv.2 I = inv r R
subrginv.3 U = Unit S
subrginv.4 J = inv r S
Assertion subrginv A SubRing R X U I X = J X

Proof

Step Hyp Ref Expression
1 subrginv.1 S = R 𝑠 A
2 subrginv.2 I = inv r R
3 subrginv.3 U = Unit S
4 subrginv.4 J = inv r S
5 subrgrcl A SubRing R R Ring
6 5 adantr A SubRing R X U R Ring
7 1 subrgbas A SubRing R A = Base S
8 eqid Base R = Base R
9 8 subrgss A SubRing R A Base R
10 7 9 eqsstrrd A SubRing R Base S Base R
11 10 adantr A SubRing R X U Base S Base R
12 1 subrgring A SubRing R S Ring
13 eqid Base S = Base S
14 3 4 13 ringinvcl S Ring X U J X Base S
15 12 14 sylan A SubRing R X U J X Base S
16 11 15 sseldd A SubRing R X U J X Base R
17 13 3 unitcl X U X Base S
18 17 adantl A SubRing R X U X Base S
19 11 18 sseldd A SubRing R X U X Base R
20 eqid Unit R = Unit R
21 1 20 3 subrguss A SubRing R U Unit R
22 21 sselda A SubRing R X U X Unit R
23 20 2 8 ringinvcl R Ring X Unit R I X Base R
24 5 22 23 syl2an2r A SubRing R X U I X Base R
25 eqid R = R
26 8 25 ringass R Ring J X Base R X Base R I X Base R J X R X R I X = J X R X R I X
27 6 16 19 24 26 syl13anc A SubRing R X U J X R X R I X = J X R X R I X
28 eqid S = S
29 eqid 1 S = 1 S
30 3 4 28 29 unitlinv S Ring X U J X S X = 1 S
31 12 30 sylan A SubRing R X U J X S X = 1 S
32 1 25 ressmulr A SubRing R R = S
33 32 adantr A SubRing R X U R = S
34 33 oveqd A SubRing R X U J X R X = J X S X
35 eqid 1 R = 1 R
36 1 35 subrg1 A SubRing R 1 R = 1 S
37 36 adantr A SubRing R X U 1 R = 1 S
38 31 34 37 3eqtr4d A SubRing R X U J X R X = 1 R
39 38 oveq1d A SubRing R X U J X R X R I X = 1 R R I X
40 20 2 25 35 unitrinv R Ring X Unit R X R I X = 1 R
41 5 22 40 syl2an2r A SubRing R X U X R I X = 1 R
42 41 oveq2d A SubRing R X U J X R X R I X = J X R 1 R
43 27 39 42 3eqtr3d A SubRing R X U 1 R R I X = J X R 1 R
44 8 25 35 ringlidm R Ring I X Base R 1 R R I X = I X
45 5 24 44 syl2an2r A SubRing R X U 1 R R I X = I X
46 8 25 35 ringridm R Ring J X Base R J X R 1 R = J X
47 5 16 46 syl2an2r A SubRing R X U J X R 1 R = J X
48 43 45 47 3eqtr3d A SubRing R X U I X = J X