Step |
Hyp |
Ref |
Expression |
1 |
|
subrginv.1 |
|
2 |
|
subrginv.2 |
|
3 |
|
subrginv.3 |
|
4 |
|
subrginv.4 |
|
5 |
|
subrgrcl |
|
6 |
5
|
adantr |
|
7 |
1
|
subrgbas |
|
8 |
|
eqid |
|
9 |
8
|
subrgss |
|
10 |
7 9
|
eqsstrrd |
|
11 |
10
|
adantr |
|
12 |
1
|
subrgring |
|
13 |
|
eqid |
|
14 |
3 4 13
|
ringinvcl |
|
15 |
12 14
|
sylan |
|
16 |
11 15
|
sseldd |
|
17 |
13 3
|
unitcl |
|
18 |
17
|
adantl |
|
19 |
11 18
|
sseldd |
|
20 |
|
eqid |
|
21 |
1 20 3
|
subrguss |
|
22 |
21
|
sselda |
|
23 |
20 2 8
|
ringinvcl |
|
24 |
5 22 23
|
syl2an2r |
|
25 |
|
eqid |
|
26 |
8 25
|
ringass |
|
27 |
6 16 19 24 26
|
syl13anc |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
3 4 28 29
|
unitlinv |
|
31 |
12 30
|
sylan |
|
32 |
1 25
|
ressmulr |
|
33 |
32
|
adantr |
|
34 |
33
|
oveqd |
|
35 |
|
eqid |
|
36 |
1 35
|
subrg1 |
|
37 |
36
|
adantr |
|
38 |
31 34 37
|
3eqtr4d |
|
39 |
38
|
oveq1d |
|
40 |
20 2 25 35
|
unitrinv |
|
41 |
5 22 40
|
syl2an2r |
|
42 |
41
|
oveq2d |
|
43 |
27 39 42
|
3eqtr3d |
|
44 |
8 25 35
|
ringlidm |
|
45 |
5 24 44
|
syl2an2r |
|
46 |
8 25 35
|
ringridm |
|
47 |
5 16 46
|
syl2an2r |
|
48 |
43 45 47
|
3eqtr3d |
|