Metamath Proof Explorer


Theorem subrgmpl

Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses subrgmpl.s S = I mPoly R
subrgmpl.h H = R 𝑠 T
subrgmpl.u U = I mPoly H
subrgmpl.b B = Base U
Assertion subrgmpl I V T SubRing R B SubRing S

Proof

Step Hyp Ref Expression
1 subrgmpl.s S = I mPoly R
2 subrgmpl.h H = R 𝑠 T
3 subrgmpl.u U = I mPoly H
4 subrgmpl.b B = Base U
5 simpl I V T SubRing R I V
6 simpr I V T SubRing R T SubRing R
7 eqid I mPwSer H = I mPwSer H
8 eqid Base I mPwSer H = Base I mPwSer H
9 eqid Base S = Base S
10 1 2 3 4 5 6 7 8 9 ressmplbas2 I V T SubRing R B = Base I mPwSer H Base S
11 eqid I mPwSer R = I mPwSer R
12 11 2 7 8 subrgpsr I V T SubRing R Base I mPwSer H SubRing I mPwSer R
13 subrgrcl T SubRing R R Ring
14 13 adantl I V T SubRing R R Ring
15 11 1 9 5 14 mplsubrg I V T SubRing R Base S SubRing I mPwSer R
16 subrgin Base I mPwSer H SubRing I mPwSer R Base S SubRing I mPwSer R Base I mPwSer H Base S SubRing I mPwSer R
17 12 15 16 syl2anc I V T SubRing R Base I mPwSer H Base S SubRing I mPwSer R
18 10 17 eqeltrd I V T SubRing R B SubRing I mPwSer R
19 inss2 Base I mPwSer H Base S Base S
20 10 19 eqsstrdi I V T SubRing R B Base S
21 1 11 9 mplval2 S = I mPwSer R 𝑠 Base S
22 21 subsubrg Base S SubRing I mPwSer R B SubRing S B SubRing I mPwSer R B Base S
23 15 22 syl I V T SubRing R B SubRing S B SubRing I mPwSer R B Base S
24 18 20 23 mpbir2and I V T SubRing R B SubRing S