Metamath Proof Explorer


Theorem subrgmvr

Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgmvr.v V = I mVar R
subrgmvr.i φ I W
subrgmvr.r φ T SubRing R
subrgmvr.h H = R 𝑠 T
Assertion subrgmvr φ V = I mVar H

Proof

Step Hyp Ref Expression
1 subrgmvr.v V = I mVar R
2 subrgmvr.i φ I W
3 subrgmvr.r φ T SubRing R
4 subrgmvr.h H = R 𝑠 T
5 eqid 1 R = 1 R
6 4 5 subrg1 T SubRing R 1 R = 1 H
7 3 6 syl φ 1 R = 1 H
8 eqid 0 R = 0 R
9 4 8 subrg0 T SubRing R 0 R = 0 H
10 3 9 syl φ 0 R = 0 H
11 7 10 ifeq12d φ if y = z I if z = x 1 0 1 R 0 R = if y = z I if z = x 1 0 1 H 0 H
12 11 mpteq2dv φ y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 R 0 R = y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 H 0 H
13 12 mpteq2dv φ x I y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 R 0 R = x I y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 H 0 H
14 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
15 subrgrcl T SubRing R R Ring
16 3 15 syl φ R Ring
17 1 14 8 5 2 16 mvrfval φ V = x I y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 R 0 R
18 eqid I mVar H = I mVar H
19 eqid 0 H = 0 H
20 eqid 1 H = 1 H
21 4 ovexi H V
22 21 a1i φ H V
23 18 14 19 20 2 22 mvrfval φ I mVar H = x I y f 0 I | f -1 Fin if y = z I if z = x 1 0 1 H 0 H
24 13 17 23 3eqtr4d φ V = I mVar H