Metamath Proof Explorer


Theorem subrgmvrf

Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgmvr.v V = I mVar R
subrgmvr.i φ I W
subrgmvr.r φ T SubRing R
subrgmvr.h H = R 𝑠 T
subrgmvrf.u U = I mPoly H
subrgmvrf.b B = Base U
Assertion subrgmvrf φ V : I B

Proof

Step Hyp Ref Expression
1 subrgmvr.v V = I mVar R
2 subrgmvr.i φ I W
3 subrgmvr.r φ T SubRing R
4 subrgmvr.h H = R 𝑠 T
5 subrgmvrf.u U = I mPoly H
6 subrgmvrf.b B = Base U
7 eqid I mPwSer R = I mPwSer R
8 eqid Base I mPwSer R = Base I mPwSer R
9 subrgrcl T SubRing R R Ring
10 3 9 syl φ R Ring
11 7 1 8 2 10 mvrf φ V : I Base I mPwSer R
12 11 ffnd φ V Fn I
13 1 2 3 4 subrgmvr φ V = I mVar H
14 13 fveq1d φ V x = I mVar H x
15 14 adantr φ x I V x = I mVar H x
16 eqid I mVar H = I mVar H
17 2 adantr φ x I I W
18 4 subrgring T SubRing R H Ring
19 3 18 syl φ H Ring
20 19 adantr φ x I H Ring
21 simpr φ x I x I
22 5 16 6 17 20 21 mvrcl φ x I I mVar H x B
23 15 22 eqeltrd φ x I V x B
24 23 ralrimiva φ x I V x B
25 ffnfv V : I B V Fn I x I V x B
26 12 24 25 sylanbrc φ V : I B