Metamath Proof Explorer


Theorem subrgnrg

Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis subrgnrg.h H = G 𝑠 A
Assertion subrgnrg G NrmRing A SubRing G H NrmRing

Proof

Step Hyp Ref Expression
1 subrgnrg.h H = G 𝑠 A
2 nrgngp G NrmRing G NrmGrp
3 subrgsubg A SubRing G A SubGrp G
4 1 subgngp G NrmGrp A SubGrp G H NrmGrp
5 2 3 4 syl2an G NrmRing A SubRing G H NrmGrp
6 3 adantl G NrmRing A SubRing G A SubGrp G
7 eqid norm G = norm G
8 eqid norm H = norm H
9 1 7 8 subgnm A SubGrp G norm H = norm G A
10 6 9 syl G NrmRing A SubRing G norm H = norm G A
11 eqid AbsVal G = AbsVal G
12 7 11 nrgabv G NrmRing norm G AbsVal G
13 eqid AbsVal H = AbsVal H
14 11 1 13 abvres norm G AbsVal G A SubRing G norm G A AbsVal H
15 12 14 sylan G NrmRing A SubRing G norm G A AbsVal H
16 10 15 eqeltrd G NrmRing A SubRing G norm H AbsVal H
17 8 13 isnrg H NrmRing H NrmGrp norm H AbsVal H
18 5 16 17 sylanbrc G NrmRing A SubRing G H NrmRing