Step |
Hyp |
Ref |
Expression |
1 |
|
subrgpropd.1 |
|
2 |
|
subrgpropd.2 |
|
3 |
|
subrgpropd.3 |
|
4 |
|
subrgpropd.4 |
|
5 |
1 2 3 4
|
ringpropd |
|
6 |
1
|
ineq2d |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
7 8
|
ressbas |
|
10 |
9
|
elv |
|
11 |
6 10
|
eqtrdi |
|
12 |
2
|
ineq2d |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
ressbas |
|
16 |
15
|
elv |
|
17 |
12 16
|
eqtrdi |
|
18 |
|
elinel2 |
|
19 |
|
elinel2 |
|
20 |
18 19
|
anim12i |
|
21 |
|
eqid |
|
22 |
7 21
|
ressplusg |
|
23 |
22
|
elv |
|
24 |
23
|
oveqi |
|
25 |
|
eqid |
|
26 |
13 25
|
ressplusg |
|
27 |
26
|
elv |
|
28 |
27
|
oveqi |
|
29 |
3 24 28
|
3eqtr3g |
|
30 |
20 29
|
sylan2 |
|
31 |
|
eqid |
|
32 |
7 31
|
ressmulr |
|
33 |
32
|
elv |
|
34 |
33
|
oveqi |
|
35 |
|
eqid |
|
36 |
13 35
|
ressmulr |
|
37 |
36
|
elv |
|
38 |
37
|
oveqi |
|
39 |
4 34 38
|
3eqtr3g |
|
40 |
20 39
|
sylan2 |
|
41 |
11 17 30 40
|
ringpropd |
|
42 |
5 41
|
anbi12d |
|
43 |
1 2
|
eqtr3d |
|
44 |
43
|
sseq2d |
|
45 |
1 2 4
|
rngidpropd |
|
46 |
45
|
eleq1d |
|
47 |
44 46
|
anbi12d |
|
48 |
42 47
|
anbi12d |
|
49 |
|
eqid |
|
50 |
8 49
|
issubrg |
|
51 |
|
eqid |
|
52 |
14 51
|
issubrg |
|
53 |
48 50 52
|
3bitr4g |
|
54 |
53
|
eqrdv |
|