Metamath Proof Explorer


Theorem subrgrcl

Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Assertion subrgrcl ASubRingRRRing

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid 1R=1R
3 1 2 issubrg ASubRingRRRingR𝑠ARingABaseR1RA
4 3 simplbi ASubRingRRRingR𝑠ARing
5 4 simpld ASubRingRRRing