Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
subrgrcl
Next ⟩
subrgsubg
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrgrcl
Description:
Reverse closure for a subring predicate.
(Contributed by
Mario Carneiro
, 3-Dec-2014)
Ref
Expression
Assertion
subrgrcl
⊢
A
∈
SubRing
⁡
R
→
R
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
R
=
Base
R
2
eqid
⊢
1
R
=
1
R
3
1
2
issubrg
⊢
A
∈
SubRing
⁡
R
↔
R
∈
Ring
∧
R
↾
𝑠
A
∈
Ring
∧
A
⊆
Base
R
∧
1
R
∈
A
4
3
simplbi
⊢
A
∈
SubRing
⁡
R
→
R
∈
Ring
∧
R
↾
𝑠
A
∈
Ring
5
4
simpld
⊢
A
∈
SubRing
⁡
R
→
R
∈
Ring