Metamath Proof Explorer


Theorem subrgring

Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgring.1 S = R 𝑠 A
Assertion subrgring A SubRing R S Ring

Proof

Step Hyp Ref Expression
1 subrgring.1 S = R 𝑠 A
2 eqid Base R = Base R
3 eqid 1 R = 1 R
4 2 3 issubrg A SubRing R R Ring R 𝑠 A Ring A Base R 1 R A
5 4 simplbi A SubRing R R Ring R 𝑠 A Ring
6 5 simprd A SubRing R R 𝑠 A Ring
7 1 6 eqeltrid A SubRing R S Ring