Database
BASIC ALGEBRAIC STRUCTURES
Rings
Subrings
Subrings of unital rings
subrgring
Next ⟩
subrgcrng
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrgring
Description:
A subring is a ring.
(Contributed by
Stefan O'Rear
, 27-Nov-2014)
Ref
Expression
Hypothesis
subrgring.1
⊢
S
=
R
↾
𝑠
A
Assertion
subrgring
⊢
A
∈
SubRing
⁡
R
→
S
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
subrgring.1
⊢
S
=
R
↾
𝑠
A
2
eqid
⊢
Base
R
=
Base
R
3
eqid
⊢
1
R
=
1
R
4
2
3
issubrg
⊢
A
∈
SubRing
⁡
R
↔
R
∈
Ring
∧
R
↾
𝑠
A
∈
Ring
∧
A
⊆
Base
R
∧
1
R
∈
A
5
4
simplbi
⊢
A
∈
SubRing
⁡
R
→
R
∈
Ring
∧
R
↾
𝑠
A
∈
Ring
6
5
simprd
⊢
A
∈
SubRing
⁡
R
→
R
↾
𝑠
A
∈
Ring
7
1
6
eqeltrid
⊢
A
∈
SubRing
⁡
R
→
S
∈
Ring