Metamath Proof Explorer


Theorem subrgss

Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgss.1 B = Base R
Assertion subrgss A SubRing R A B

Proof

Step Hyp Ref Expression
1 subrgss.1 B = Base R
2 eqid 1 R = 1 R
3 1 2 issubrg A SubRing R R Ring R 𝑠 A Ring A B 1 R A
4 3 simprbi A SubRing R A B 1 R A
5 4 simpld A SubRing R A B