Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
subrgss
Next ⟩
subrgid
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrgss
Description:
A subring is a subset.
(Contributed by
Stefan O'Rear
, 27-Nov-2014)
Ref
Expression
Hypothesis
subrgss.1
⊢
B
=
Base
R
Assertion
subrgss
⊢
A
∈
SubRing
⁡
R
→
A
⊆
B
Proof
Step
Hyp
Ref
Expression
1
subrgss.1
⊢
B
=
Base
R
2
eqid
⊢
1
R
=
1
R
3
1
2
issubrg
⊢
A
∈
SubRing
⁡
R
↔
R
∈
Ring
∧
R
↾
𝑠
A
∈
Ring
∧
A
⊆
B
∧
1
R
∈
A
4
3
simprbi
⊢
A
∈
SubRing
⁡
R
→
A
⊆
B
∧
1
R
∈
A
5
4
simpld
⊢
A
∈
SubRing
⁡
R
→
A
⊆
B