Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
subrgsubg
Next ⟩
subrg0
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrgsubg
Description:
A subring is a subgroup.
(Contributed by
Mario Carneiro
, 3-Dec-2014)
Ref
Expression
Assertion
subrgsubg
⊢
A
∈
SubRing
⁡
R
→
A
∈
SubGrp
⁡
R
Proof
Step
Hyp
Ref
Expression
1
subrgrcl
⊢
A
∈
SubRing
⁡
R
→
R
∈
Ring
2
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
3
1
2
syl
⊢
A
∈
SubRing
⁡
R
→
R
∈
Grp
4
eqid
⊢
Base
R
=
Base
R
5
4
subrgss
⊢
A
∈
SubRing
⁡
R
→
A
⊆
Base
R
6
eqid
⊢
R
↾
𝑠
A
=
R
↾
𝑠
A
7
6
subrgring
⊢
A
∈
SubRing
⁡
R
→
R
↾
𝑠
A
∈
Ring
8
ringgrp
⊢
R
↾
𝑠
A
∈
Ring
→
R
↾
𝑠
A
∈
Grp
9
7
8
syl
⊢
A
∈
SubRing
⁡
R
→
R
↾
𝑠
A
∈
Grp
10
4
issubg
⊢
A
∈
SubGrp
⁡
R
↔
R
∈
Grp
∧
A
⊆
Base
R
∧
R
↾
𝑠
A
∈
Grp
11
3
5
9
10
syl3anbrc
⊢
A
∈
SubRing
⁡
R
→
A
∈
SubGrp
⁡
R