Metamath Proof Explorer


Theorem subrgsubm

Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis subrgsubm.1 M = mulGrp R
Assertion subrgsubm A SubRing R A SubMnd M

Proof

Step Hyp Ref Expression
1 subrgsubm.1 M = mulGrp R
2 eqid Base R = Base R
3 2 subrgss A SubRing R A Base R
4 eqid 1 R = 1 R
5 4 subrg1cl A SubRing R 1 R A
6 subrgrcl A SubRing R R Ring
7 eqid R 𝑠 A = R 𝑠 A
8 7 1 mgpress R Ring A SubRing R M 𝑠 A = mulGrp R 𝑠 A
9 6 8 mpancom A SubRing R M 𝑠 A = mulGrp R 𝑠 A
10 7 subrgring A SubRing R R 𝑠 A Ring
11 eqid mulGrp R 𝑠 A = mulGrp R 𝑠 A
12 11 ringmgp R 𝑠 A Ring mulGrp R 𝑠 A Mnd
13 10 12 syl A SubRing R mulGrp R 𝑠 A Mnd
14 9 13 eqeltrd A SubRing R M 𝑠 A Mnd
15 1 ringmgp R Ring M Mnd
16 1 2 mgpbas Base R = Base M
17 1 4 ringidval 1 R = 0 M
18 eqid M 𝑠 A = M 𝑠 A
19 16 17 18 issubm2 M Mnd A SubMnd M A Base R 1 R A M 𝑠 A Mnd
20 6 15 19 3syl A SubRing R A SubMnd M A Base R 1 R A M 𝑠 A Mnd
21 3 5 14 20 mpbir3and A SubRing R A SubMnd M