Metamath Proof Explorer


Theorem subrgsubrng

Description: A subring of a unital ring is a subring of a non-unital ring. (Contributed by AV, 30-Mar-2025)

Ref Expression
Assertion subrgsubrng Could not format assertion : No typesetting found for |- ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid 1 R = 1 R
3 1 2 issubrg A SubRing R R Ring R 𝑠 A Ring A Base R 1 R A
4 ringrng R Ring R Rng
5 4 ad2antrr R Ring R 𝑠 A Ring A Base R 1 R A R Rng
6 ringrng R 𝑠 A Ring R 𝑠 A Rng
7 6 ad2antlr R Ring R 𝑠 A Ring A Base R 1 R A R 𝑠 A Rng
8 simprl R Ring R 𝑠 A Ring A Base R 1 R A A Base R
9 1 issubrng Could not format ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) with typecode |-
10 5 7 8 9 syl3anbrc Could not format ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> A e. ( SubRng ` R ) ) : No typesetting found for |- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> A e. ( SubRng ` R ) ) with typecode |-
11 3 10 sylbi Could not format ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) : No typesetting found for |- ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) with typecode |-