Metamath Proof Explorer


Theorem subrgugrp

Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrgugrp.1 S = R 𝑠 A
subrgugrp.2 U = Unit R
subrgugrp.3 V = Unit S
subrgugrp.4 G = mulGrp R 𝑠 U
Assertion subrgugrp A SubRing R V SubGrp G

Proof

Step Hyp Ref Expression
1 subrgugrp.1 S = R 𝑠 A
2 subrgugrp.2 U = Unit R
3 subrgugrp.3 V = Unit S
4 subrgugrp.4 G = mulGrp R 𝑠 U
5 1 2 3 subrguss A SubRing R V U
6 1 subrgring A SubRing R S Ring
7 eqid 1 S = 1 S
8 3 7 1unit S Ring 1 S V
9 ne0i 1 S V V
10 6 8 9 3syl A SubRing R V
11 eqid R = R
12 1 11 ressmulr A SubRing R R = S
13 12 3ad2ant1 A SubRing R x V y V R = S
14 13 oveqd A SubRing R x V y V x R y = x S y
15 eqid S = S
16 3 15 unitmulcl S Ring x V y V x S y V
17 6 16 syl3an1 A SubRing R x V y V x S y V
18 14 17 eqeltrd A SubRing R x V y V x R y V
19 18 3expa A SubRing R x V y V x R y V
20 19 ralrimiva A SubRing R x V y V x R y V
21 eqid inv r R = inv r R
22 eqid inv r S = inv r S
23 1 21 3 22 subrginv A SubRing R x V inv r R x = inv r S x
24 3 22 unitinvcl S Ring x V inv r S x V
25 6 24 sylan A SubRing R x V inv r S x V
26 23 25 eqeltrd A SubRing R x V inv r R x V
27 20 26 jca A SubRing R x V y V x R y V inv r R x V
28 27 ralrimiva A SubRing R x V y V x R y V inv r R x V
29 subrgrcl A SubRing R R Ring
30 2 4 unitgrp R Ring G Grp
31 2 4 unitgrpbas U = Base G
32 2 fvexi U V
33 eqid mulGrp R = mulGrp R
34 33 11 mgpplusg R = + mulGrp R
35 4 34 ressplusg U V R = + G
36 32 35 ax-mp R = + G
37 2 4 21 invrfval inv r R = inv g G
38 31 36 37 issubg2 G Grp V SubGrp G V U V x V y V x R y V inv r R x V
39 29 30 38 3syl A SubRing R V SubGrp G V U V x V y V x R y V inv r R x V
40 5 10 28 39 mpbir3and A SubRing R V SubGrp G