Step |
Hyp |
Ref |
Expression |
1 |
|
subrgugrp.1 |
|
2 |
|
subrgugrp.2 |
|
3 |
|
subrgugrp.3 |
|
4 |
|
subrgugrp.4 |
|
5 |
1 2 3
|
subrguss |
|
6 |
1
|
subrgring |
|
7 |
|
eqid |
|
8 |
3 7
|
1unit |
|
9 |
|
ne0i |
|
10 |
6 8 9
|
3syl |
|
11 |
|
eqid |
|
12 |
1 11
|
ressmulr |
|
13 |
12
|
3ad2ant1 |
|
14 |
13
|
oveqd |
|
15 |
|
eqid |
|
16 |
3 15
|
unitmulcl |
|
17 |
6 16
|
syl3an1 |
|
18 |
14 17
|
eqeltrd |
|
19 |
18
|
3expa |
|
20 |
19
|
ralrimiva |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
1 21 3 22
|
subrginv |
|
24 |
3 22
|
unitinvcl |
|
25 |
6 24
|
sylan |
|
26 |
23 25
|
eqeltrd |
|
27 |
20 26
|
jca |
|
28 |
27
|
ralrimiva |
|
29 |
|
subrgrcl |
|
30 |
2 4
|
unitgrp |
|
31 |
2 4
|
unitgrpbas |
|
32 |
2
|
fvexi |
|
33 |
|
eqid |
|
34 |
33 11
|
mgpplusg |
|
35 |
4 34
|
ressplusg |
|
36 |
32 35
|
ax-mp |
|
37 |
2 4 21
|
invrfval |
|
38 |
31 36 37
|
issubg2 |
|
39 |
29 30 38
|
3syl |
|
40 |
5 10 28 39
|
mpbir3and |
|