Step |
Hyp |
Ref |
Expression |
1 |
|
subrgugrp.1 |
|
2 |
|
subrgugrp.2 |
|
3 |
|
subrgugrp.3 |
|
4 |
|
subrgunit.4 |
|
5 |
1 2 3
|
subrguss |
|
6 |
5
|
sselda |
|
7 |
|
eqid |
|
8 |
7 3
|
unitcl |
|
9 |
8
|
adantl |
|
10 |
1
|
subrgbas |
|
11 |
10
|
adantr |
|
12 |
9 11
|
eleqtrrd |
|
13 |
1
|
subrgring |
|
14 |
|
eqid |
|
15 |
3 14 7
|
ringinvcl |
|
16 |
13 15
|
sylan |
|
17 |
1 4 3 14
|
subrginv |
|
18 |
16 17 11
|
3eltr4d |
|
19 |
6 12 18
|
3jca |
|
20 |
|
simpr2 |
|
21 |
10
|
adantr |
|
22 |
20 21
|
eleqtrd |
|
23 |
|
simpr3 |
|
24 |
23 21
|
eleqtrd |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
7 25 26
|
dvdsrmul |
|
28 |
22 24 27
|
syl2anc |
|
29 |
|
subrgrcl |
|
30 |
29
|
adantr |
|
31 |
|
simpr1 |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
2 4 32 33
|
unitlinv |
|
35 |
30 31 34
|
syl2anc |
|
36 |
1 32
|
ressmulr |
|
37 |
36
|
adantr |
|
38 |
37
|
oveqd |
|
39 |
1 33
|
subrg1 |
|
40 |
39
|
adantr |
|
41 |
35 38 40
|
3eqtr3d |
|
42 |
28 41
|
breqtrd |
|
43 |
|
eqid |
|
44 |
43 7
|
opprbas |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
44 45 46
|
dvdsrmul |
|
48 |
22 24 47
|
syl2anc |
|
49 |
7 26 43 46
|
opprmul |
|
50 |
2 4 32 33
|
unitrinv |
|
51 |
30 31 50
|
syl2anc |
|
52 |
37
|
oveqd |
|
53 |
51 52 40
|
3eqtr3d |
|
54 |
49 53
|
eqtrid |
|
55 |
48 54
|
breqtrd |
|
56 |
|
eqid |
|
57 |
3 56 25 43 45
|
isunit |
|
58 |
42 55 57
|
sylanbrc |
|
59 |
19 58
|
impbida |
|