| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgugrp.1 |
|
| 2 |
|
subrgugrp.2 |
|
| 3 |
|
subrgugrp.3 |
|
| 4 |
|
subrgunit.4 |
|
| 5 |
1 2 3
|
subrguss |
|
| 6 |
5
|
sselda |
|
| 7 |
|
eqid |
|
| 8 |
7 3
|
unitcl |
|
| 9 |
8
|
adantl |
|
| 10 |
1
|
subrgbas |
|
| 11 |
10
|
adantr |
|
| 12 |
9 11
|
eleqtrrd |
|
| 13 |
1
|
subrgring |
|
| 14 |
|
eqid |
|
| 15 |
3 14 7
|
ringinvcl |
|
| 16 |
13 15
|
sylan |
|
| 17 |
1 4 3 14
|
subrginv |
|
| 18 |
16 17 11
|
3eltr4d |
|
| 19 |
6 12 18
|
3jca |
|
| 20 |
|
simpr2 |
|
| 21 |
10
|
adantr |
|
| 22 |
20 21
|
eleqtrd |
|
| 23 |
|
simpr3 |
|
| 24 |
23 21
|
eleqtrd |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
7 25 26
|
dvdsrmul |
|
| 28 |
22 24 27
|
syl2anc |
|
| 29 |
|
subrgrcl |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr1 |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
2 4 32 33
|
unitlinv |
|
| 35 |
30 31 34
|
syl2anc |
|
| 36 |
1 32
|
ressmulr |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
oveqd |
|
| 39 |
1 33
|
subrg1 |
|
| 40 |
39
|
adantr |
|
| 41 |
35 38 40
|
3eqtr3d |
|
| 42 |
28 41
|
breqtrd |
|
| 43 |
|
eqid |
|
| 44 |
43 7
|
opprbas |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
44 45 46
|
dvdsrmul |
|
| 48 |
22 24 47
|
syl2anc |
|
| 49 |
7 26 43 46
|
opprmul |
|
| 50 |
2 4 32 33
|
unitrinv |
|
| 51 |
30 31 50
|
syl2anc |
|
| 52 |
37
|
oveqd |
|
| 53 |
51 52 40
|
3eqtr3d |
|
| 54 |
49 53
|
eqtrid |
|
| 55 |
48 54
|
breqtrd |
|
| 56 |
|
eqid |
|
| 57 |
3 56 25 43 45
|
isunit |
|
| 58 |
42 55 57
|
sylanbrc |
|
| 59 |
19 58
|
impbida |
|