Metamath Proof Explorer


Theorem subrguss

Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrguss.1 S = R 𝑠 A
subrguss.2 U = Unit R
subrguss.3 V = Unit S
Assertion subrguss A SubRing R V U

Proof

Step Hyp Ref Expression
1 subrguss.1 S = R 𝑠 A
2 subrguss.2 U = Unit R
3 subrguss.3 V = Unit S
4 simpr A SubRing R x V x V
5 eqid 1 S = 1 S
6 eqid r S = r S
7 eqid opp r S = opp r S
8 eqid r opp r S = r opp r S
9 3 5 6 7 8 isunit x V x r S 1 S x r opp r S 1 S
10 4 9 sylib A SubRing R x V x r S 1 S x r opp r S 1 S
11 10 simpld A SubRing R x V x r S 1 S
12 eqid 1 R = 1 R
13 1 12 subrg1 A SubRing R 1 R = 1 S
14 13 adantr A SubRing R x V 1 R = 1 S
15 11 14 breqtrrd A SubRing R x V x r S 1 R
16 eqid r R = r R
17 1 16 6 subrgdvds A SubRing R r S r R
18 17 adantr A SubRing R x V r S r R
19 18 ssbrd A SubRing R x V x r S 1 R x r R 1 R
20 15 19 mpd A SubRing R x V x r R 1 R
21 1 subrgbas A SubRing R A = Base S
22 21 adantr A SubRing R x V A = Base S
23 eqid Base R = Base R
24 23 subrgss A SubRing R A Base R
25 24 adantr A SubRing R x V A Base R
26 22 25 eqsstrrd A SubRing R x V Base S Base R
27 eqid Base S = Base S
28 27 3 unitcl x V x Base S
29 28 adantl A SubRing R x V x Base S
30 26 29 sseldd A SubRing R x V x Base R
31 1 subrgring A SubRing R S Ring
32 eqid inv r S = inv r S
33 3 32 27 ringinvcl S Ring x V inv r S x Base S
34 31 33 sylan A SubRing R x V inv r S x Base S
35 26 34 sseldd A SubRing R x V inv r S x Base R
36 eqid opp r R = opp r R
37 36 23 opprbas Base R = Base opp r R
38 eqid r opp r R = r opp r R
39 eqid opp r R = opp r R
40 37 38 39 dvdsrmul x Base R inv r S x Base R x r opp r R inv r S x opp r R x
41 30 35 40 syl2anc A SubRing R x V x r opp r R inv r S x opp r R x
42 eqid R = R
43 23 42 36 39 opprmul inv r S x opp r R x = x R inv r S x
44 eqid S = S
45 3 32 44 5 unitrinv S Ring x V x S inv r S x = 1 S
46 31 45 sylan A SubRing R x V x S inv r S x = 1 S
47 1 42 ressmulr A SubRing R R = S
48 47 adantr A SubRing R x V R = S
49 48 oveqd A SubRing R x V x R inv r S x = x S inv r S x
50 46 49 14 3eqtr4d A SubRing R x V x R inv r S x = 1 R
51 43 50 eqtrid A SubRing R x V inv r S x opp r R x = 1 R
52 41 51 breqtrd A SubRing R x V x r opp r R 1 R
53 2 12 16 36 38 isunit x U x r R 1 R x r opp r R 1 R
54 20 52 53 sylanbrc A SubRing R x V x U
55 54 ex A SubRing R x V x U
56 55 ssrdv A SubRing R V U