Step |
Hyp |
Ref |
Expression |
1 |
|
subrguss.1 |
|
2 |
|
subrguss.2 |
|
3 |
|
subrguss.3 |
|
4 |
|
simpr |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
3 5 6 7 8
|
isunit |
|
10 |
4 9
|
sylib |
|
11 |
10
|
simpld |
|
12 |
|
eqid |
|
13 |
1 12
|
subrg1 |
|
14 |
13
|
adantr |
|
15 |
11 14
|
breqtrrd |
|
16 |
|
eqid |
|
17 |
1 16 6
|
subrgdvds |
|
18 |
17
|
adantr |
|
19 |
18
|
ssbrd |
|
20 |
15 19
|
mpd |
|
21 |
1
|
subrgbas |
|
22 |
21
|
adantr |
|
23 |
|
eqid |
|
24 |
23
|
subrgss |
|
25 |
24
|
adantr |
|
26 |
22 25
|
eqsstrrd |
|
27 |
|
eqid |
|
28 |
27 3
|
unitcl |
|
29 |
28
|
adantl |
|
30 |
26 29
|
sseldd |
|
31 |
1
|
subrgring |
|
32 |
|
eqid |
|
33 |
3 32 27
|
ringinvcl |
|
34 |
31 33
|
sylan |
|
35 |
26 34
|
sseldd |
|
36 |
|
eqid |
|
37 |
36 23
|
opprbas |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
37 38 39
|
dvdsrmul |
|
41 |
30 35 40
|
syl2anc |
|
42 |
|
eqid |
|
43 |
23 42 36 39
|
opprmul |
|
44 |
|
eqid |
|
45 |
3 32 44 5
|
unitrinv |
|
46 |
31 45
|
sylan |
|
47 |
1 42
|
ressmulr |
|
48 |
47
|
adantr |
|
49 |
48
|
oveqd |
|
50 |
46 49 14
|
3eqtr4d |
|
51 |
43 50
|
eqtrid |
|
52 |
41 51
|
breqtrd |
|
53 |
2 12 16 36 38
|
isunit |
|
54 |
20 52 53
|
sylanbrc |
|
55 |
54
|
ex |
|
56 |
55
|
ssrdv |
|