Metamath Proof Explorer


Theorem subrgvr1cl

Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses subrgvr1.x X = var 1 R
subrgvr1.r φ T SubRing R
subrgvr1.h H = R 𝑠 T
subrgvr1cl.u U = Poly 1 H
subrgvr1cl.b B = Base U
Assertion subrgvr1cl φ X B

Proof

Step Hyp Ref Expression
1 subrgvr1.x X = var 1 R
2 subrgvr1.r φ T SubRing R
3 subrgvr1.h H = R 𝑠 T
4 subrgvr1cl.u U = Poly 1 H
5 subrgvr1cl.b B = Base U
6 1 vr1val X = 1 𝑜 mVar R
7 eqid 1 𝑜 mVar R = 1 𝑜 mVar R
8 1on 1 𝑜 On
9 8 a1i φ 1 𝑜 On
10 eqid 1 𝑜 mPoly H = 1 𝑜 mPoly H
11 eqid PwSer 1 H = PwSer 1 H
12 4 11 5 ply1bas B = Base 1 𝑜 mPoly H
13 7 9 2 3 10 12 subrgmvrf φ 1 𝑜 mVar R : 1 𝑜 B
14 0lt1o 1 𝑜
15 ffvelrn 1 𝑜 mVar R : 1 𝑜 B 1 𝑜 1 𝑜 mVar R B
16 13 14 15 sylancl φ 1 𝑜 mVar R B
17 6 16 eqeltrid φ X B