Metamath Proof Explorer


Theorem subridom

Description: A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses subridom.1 φ R IDomn
subridom.2 φ S SubRing R
Assertion subridom φ R 𝑠 S IDomn

Proof

Step Hyp Ref Expression
1 subridom.1 φ R IDomn
2 subridom.2 φ S SubRing R
3 1 idomcringd φ R CRing
4 eqid R 𝑠 S = R 𝑠 S
5 4 subrgcrng R CRing S SubRing R R 𝑠 S CRing
6 3 2 5 syl2anc φ R 𝑠 S CRing
7 1 idomdomd φ R Domn
8 7 2 subrdom φ R 𝑠 S Domn
9 isidom R 𝑠 S IDomn R 𝑠 S CRing R 𝑠 S Domn
10 6 8 9 sylanbrc φ R 𝑠 S IDomn