Metamath Proof Explorer


Theorem subrngacl

Description: A subring is closed under addition. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngacl.p + ˙ = + R
Assertion subrngacl A SubRng R X A Y A X + ˙ Y A

Proof

Step Hyp Ref Expression
1 subrngacl.p + ˙ = + R
2 subrngsubg A SubRng R A SubGrp R
3 1 subgcl A SubGrp R X A Y A X + ˙ Y A
4 2 3 syl3an1 A SubRng R X A Y A X + ˙ Y A