Database
BASIC ALGEBRAIC STRUCTURES
Rings
Subrings
Subrings of non-unital rings
subrngacl
Next ⟩
subrngmcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrngacl
Description:
A subring is closed under addition.
(Contributed by
AV
, 14-Feb-2025)
Ref
Expression
Hypothesis
subrngacl.p
⊢
+
˙
=
+
R
Assertion
subrngacl
⊢
A
∈
SubRng
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A
Proof
Step
Hyp
Ref
Expression
1
subrngacl.p
⊢
+
˙
=
+
R
2
subrngsubg
⊢
A
∈
SubRng
⁡
R
→
A
∈
SubGrp
⁡
R
3
1
subgcl
⊢
A
∈
SubGrp
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A
4
2
3
syl3an1
⊢
A
∈
SubRng
⁡
R
∧
X
∈
A
∧
Y
∈
A
→
X
+
˙
Y
∈
A