Database
BASIC ALGEBRAIC STRUCTURES
Rings
Subrings
Subrings of non-unital rings
subrngin
Next ⟩
subrngmre
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrngin
Description:
The intersection of two subrings is a subring.
(Contributed by
AV
, 15-Feb-2025)
Ref
Expression
Assertion
subrngin
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
A
∩
B
∈
SubRng
⁡
R
Proof
Step
Hyp
Ref
Expression
1
intprg
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
⋂
A
B
=
A
∩
B
2
prssi
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
A
B
⊆
SubRng
⁡
R
3
prnzg
⊢
A
∈
SubRng
⁡
R
→
A
B
≠
∅
4
3
adantr
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
A
B
≠
∅
5
subrngint
⊢
A
B
⊆
SubRng
⁡
R
∧
A
B
≠
∅
→
⋂
A
B
∈
SubRng
⁡
R
6
2
4
5
syl2anc
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
⋂
A
B
∈
SubRng
⁡
R
7
1
6
eqeltrrd
⊢
A
∈
SubRng
⁡
R
∧
B
∈
SubRng
⁡
R
→
A
∩
B
∈
SubRng
⁡
R