Metamath Proof Explorer


Theorem subrngint

Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Assertion subrngint S SubRng R S S SubRng R

Proof

Step Hyp Ref Expression
1 subrngsubg r SubRng R r SubGrp R
2 1 ssriv SubRng R SubGrp R
3 sstr S SubRng R SubRng R SubGrp R S SubGrp R
4 2 3 mpan2 S SubRng R S SubGrp R
5 subgint S SubGrp R S S SubGrp R
6 4 5 sylan S SubRng R S S SubGrp R
7 ssel2 S SubRng R r S r SubRng R
8 7 ad4ant14 S SubRng R S x S y S r S r SubRng R
9 simprl S SubRng R S x S y S x S
10 elinti x S r S x r
11 10 imp x S r S x r
12 9 11 sylan S SubRng R S x S y S r S x r
13 simprr S SubRng R S x S y S y S
14 elinti y S r S y r
15 14 imp y S r S y r
16 13 15 sylan S SubRng R S x S y S r S y r
17 eqid R = R
18 17 subrngmcl r SubRng R x r y r x R y r
19 8 12 16 18 syl3anc S SubRng R S x S y S r S x R y r
20 19 ralrimiva S SubRng R S x S y S r S x R y r
21 ovex x R y V
22 21 elint2 x R y S r S x R y r
23 20 22 sylibr S SubRng R S x S y S x R y S
24 23 ralrimivva S SubRng R S x S y S x R y S
25 ssn0 S SubRng R S SubRng R
26 n0 SubRng R r r SubRng R
27 subrngrcl r SubRng R R Rng
28 27 exlimiv r r SubRng R R Rng
29 26 28 sylbi SubRng R R Rng
30 eqid Base R = Base R
31 30 17 issubrng2 R Rng S SubRng R S SubGrp R x S y S x R y S
32 25 29 31 3syl S SubRng R S S SubRng R S SubGrp R x S y S x R y S
33 6 24 32 mpbir2and S SubRng R S S SubRng R