Metamath Proof Explorer


Theorem subrngmcl

Description: A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014) Generalization of subrgmcl . (Revised by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngmcl.p · ˙ = R
Assertion subrngmcl A SubRng R X A Y A X · ˙ Y A

Proof

Step Hyp Ref Expression
1 subrngmcl.p · ˙ = R
2 eqid R 𝑠 A = R 𝑠 A
3 2 subrngrng A SubRng R R 𝑠 A Rng
4 3 3ad2ant1 A SubRng R X A Y A R 𝑠 A Rng
5 simp2 A SubRng R X A Y A X A
6 2 subrngbas A SubRng R A = Base R 𝑠 A
7 6 3ad2ant1 A SubRng R X A Y A A = Base R 𝑠 A
8 5 7 eleqtrd A SubRng R X A Y A X Base R 𝑠 A
9 simp3 A SubRng R X A Y A Y A
10 9 7 eleqtrd A SubRng R X A Y A Y Base R 𝑠 A
11 eqid Base R 𝑠 A = Base R 𝑠 A
12 eqid R 𝑠 A = R 𝑠 A
13 11 12 rngcl R 𝑠 A Rng X Base R 𝑠 A Y Base R 𝑠 A X R 𝑠 A Y Base R 𝑠 A
14 4 8 10 13 syl3anc A SubRng R X A Y A X R 𝑠 A Y Base R 𝑠 A
15 2 1 ressmulr A SubRng R · ˙ = R 𝑠 A
16 15 3ad2ant1 A SubRng R X A Y A · ˙ = R 𝑠 A
17 16 oveqd A SubRng R X A Y A X · ˙ Y = X R 𝑠 A Y
18 14 17 7 3eltr4d A SubRng R X A Y A X · ˙ Y A