Metamath Proof Explorer


Theorem subrngringnsg

Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025)

Ref Expression
Assertion subrngringnsg A SubRng R A NrmSGrp R

Proof

Step Hyp Ref Expression
1 subrngsubg A SubRng R A SubGrp R
2 subrngrcl A SubRng R R Rng
3 rngabl R Rng R Abel
4 2 3 syl A SubRng R R Abel
5 4 3anim1i A SubRng R x Base R y Base R R Abel x Base R y Base R
6 5 3expb A SubRng R x Base R y Base R R Abel x Base R y Base R
7 eqid Base R = Base R
8 eqid + R = + R
9 7 8 ablcom R Abel x Base R y Base R x + R y = y + R x
10 6 9 syl A SubRng R x Base R y Base R x + R y = y + R x
11 10 eleq1d A SubRng R x Base R y Base R x + R y A y + R x A
12 11 biimpd A SubRng R x Base R y Base R x + R y A y + R x A
13 12 ralrimivva A SubRng R x Base R y Base R x + R y A y + R x A
14 7 8 isnsg2 A NrmSGrp R A SubGrp R x Base R y Base R x + R y A y + R x A
15 1 13 14 sylanbrc A SubRng R A NrmSGrp R