Database
BASIC ALGEBRAIC STRUCTURES
Rings
Subrings
Subrings of non-unital rings
subrngringnsg
Next ⟩
subrngbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrngringnsg
Description:
A subring is a normal subgroup.
(Contributed by
AV
, 25-Feb-2025)
Ref
Expression
Assertion
subrngringnsg
⊢
A
∈
SubRng
⁡
R
→
A
∈
NrmSGrp
⁡
R
Proof
Step
Hyp
Ref
Expression
1
subrngsubg
⊢
A
∈
SubRng
⁡
R
→
A
∈
SubGrp
⁡
R
2
subrngrcl
⊢
A
∈
SubRng
⁡
R
→
R
∈
Rng
3
rngabl
⊢
R
∈
Rng
→
R
∈
Abel
4
2
3
syl
⊢
A
∈
SubRng
⁡
R
→
R
∈
Abel
5
4
3anim1i
⊢
A
∈
SubRng
⁡
R
∧
x
∈
Base
R
∧
y
∈
Base
R
→
R
∈
Abel
∧
x
∈
Base
R
∧
y
∈
Base
R
6
5
3expb
⊢
A
∈
SubRng
⁡
R
∧
x
∈
Base
R
∧
y
∈
Base
R
→
R
∈
Abel
∧
x
∈
Base
R
∧
y
∈
Base
R
7
eqid
⊢
Base
R
=
Base
R
8
eqid
⊢
+
R
=
+
R
9
7
8
ablcom
⊢
R
∈
Abel
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
=
y
+
R
x
10
6
9
syl
⊢
A
∈
SubRng
⁡
R
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
=
y
+
R
x
11
10
eleq1d
⊢
A
∈
SubRng
⁡
R
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
∈
A
↔
y
+
R
x
∈
A
12
11
biimpd
⊢
A
∈
SubRng
⁡
R
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
∈
A
→
y
+
R
x
∈
A
13
12
ralrimivva
⊢
A
∈
SubRng
⁡
R
→
∀
x
∈
Base
R
∀
y
∈
Base
R
x
+
R
y
∈
A
→
y
+
R
x
∈
A
14
7
8
isnsg2
⊢
A
∈
NrmSGrp
⁡
R
↔
A
∈
SubGrp
⁡
R
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
x
+
R
y
∈
A
→
y
+
R
x
∈
A
15
1
13
14
sylanbrc
⊢
A
∈
SubRng
⁡
R
→
A
∈
NrmSGrp
⁡
R