Metamath Proof Explorer


Theorem subsfo

Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion subsfo Could not format assertion : No typesetting found for |- -s : ( No X. No ) -onto-> No with typecode |-

Proof

Step Hyp Ref Expression
1 subsf Could not format -s : ( No X. No ) --> No : No typesetting found for |- -s : ( No X. No ) --> No with typecode |-
2 0sno Could not format 0s e. No : No typesetting found for |- 0s e. No with typecode |-
3 opelxpi Could not format ( ( x e. No /\ 0s e. No ) -> <. x , 0s >. e. ( No X. No ) ) : No typesetting found for |- ( ( x e. No /\ 0s e. No ) -> <. x , 0s >. e. ( No X. No ) ) with typecode |-
4 2 3 mpan2 Could not format ( x e. No -> <. x , 0s >. e. ( No X. No ) ) : No typesetting found for |- ( x e. No -> <. x , 0s >. e. ( No X. No ) ) with typecode |-
5 subsval Could not format ( ( x e. No /\ 0s e. No ) -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) : No typesetting found for |- ( ( x e. No /\ 0s e. No ) -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) with typecode |-
6 2 5 mpan2 Could not format ( x e. No -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) : No typesetting found for |- ( x e. No -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) with typecode |-
7 negs0s Could not format ( -us ` 0s ) = 0s : No typesetting found for |- ( -us ` 0s ) = 0s with typecode |-
8 7 oveq2i Could not format ( x +s ( -us ` 0s ) ) = ( x +s 0s ) : No typesetting found for |- ( x +s ( -us ` 0s ) ) = ( x +s 0s ) with typecode |-
9 addsrid Could not format ( x e. No -> ( x +s 0s ) = x ) : No typesetting found for |- ( x e. No -> ( x +s 0s ) = x ) with typecode |-
10 8 9 eqtrid Could not format ( x e. No -> ( x +s ( -us ` 0s ) ) = x ) : No typesetting found for |- ( x e. No -> ( x +s ( -us ` 0s ) ) = x ) with typecode |-
11 6 10 eqtr2d Could not format ( x e. No -> x = ( x -s 0s ) ) : No typesetting found for |- ( x e. No -> x = ( x -s 0s ) ) with typecode |-
12 fveq2 Could not format ( y = <. x , 0s >. -> ( -s ` y ) = ( -s ` <. x , 0s >. ) ) : No typesetting found for |- ( y = <. x , 0s >. -> ( -s ` y ) = ( -s ` <. x , 0s >. ) ) with typecode |-
13 df-ov Could not format ( x -s 0s ) = ( -s ` <. x , 0s >. ) : No typesetting found for |- ( x -s 0s ) = ( -s ` <. x , 0s >. ) with typecode |-
14 12 13 eqtr4di Could not format ( y = <. x , 0s >. -> ( -s ` y ) = ( x -s 0s ) ) : No typesetting found for |- ( y = <. x , 0s >. -> ( -s ` y ) = ( x -s 0s ) ) with typecode |-
15 14 rspceeqv Could not format ( ( <. x , 0s >. e. ( No X. No ) /\ x = ( x -s 0s ) ) -> E. y e. ( No X. No ) x = ( -s ` y ) ) : No typesetting found for |- ( ( <. x , 0s >. e. ( No X. No ) /\ x = ( x -s 0s ) ) -> E. y e. ( No X. No ) x = ( -s ` y ) ) with typecode |-
16 4 11 15 syl2anc Could not format ( x e. No -> E. y e. ( No X. No ) x = ( -s ` y ) ) : No typesetting found for |- ( x e. No -> E. y e. ( No X. No ) x = ( -s ` y ) ) with typecode |-
17 16 rgen Could not format A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) : No typesetting found for |- A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) with typecode |-
18 dffo3 Could not format ( -s : ( No X. No ) -onto-> No <-> ( -s : ( No X. No ) --> No /\ A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) ) ) : No typesetting found for |- ( -s : ( No X. No ) -onto-> No <-> ( -s : ( No X. No ) --> No /\ A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) ) ) with typecode |-
19 1 17 18 mpbir2an Could not format -s : ( No X. No ) -onto-> No : No typesetting found for |- -s : ( No X. No ) -onto-> No with typecode |-