Metamath Proof Explorer


Theorem subsge0d

Description: Non-negative subtraction. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypotheses subsge0d.1 φ A No
subsge0d.2 φ B No
Assertion subsge0d Could not format assertion : No typesetting found for |- ( ph -> ( 0s <_s ( A -s B ) <-> B <_s A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subsge0d.1 φ A No
2 subsge0d.2 φ B No
3 0sno Could not format 0s e. No : No typesetting found for |- 0s e. No with typecode |-
4 3 a1i Could not format ( ph -> 0s e. No ) : No typesetting found for |- ( ph -> 0s e. No ) with typecode |-
5 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
6 4 5 2 sleadd1d Could not format ( ph -> ( 0s <_s ( A -s B ) <-> ( 0s +s B ) <_s ( ( A -s B ) +s B ) ) ) : No typesetting found for |- ( ph -> ( 0s <_s ( A -s B ) <-> ( 0s +s B ) <_s ( ( A -s B ) +s B ) ) ) with typecode |-
7 addslid Could not format ( B e. No -> ( 0s +s B ) = B ) : No typesetting found for |- ( B e. No -> ( 0s +s B ) = B ) with typecode |-
8 2 7 syl Could not format ( ph -> ( 0s +s B ) = B ) : No typesetting found for |- ( ph -> ( 0s +s B ) = B ) with typecode |-
9 npcans Could not format ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) with typecode |-
10 1 2 9 syl2anc Could not format ( ph -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ph -> ( ( A -s B ) +s B ) = A ) with typecode |-
11 8 10 breq12d Could not format ( ph -> ( ( 0s +s B ) <_s ( ( A -s B ) +s B ) <-> B <_s A ) ) : No typesetting found for |- ( ph -> ( ( 0s +s B ) <_s ( ( A -s B ) +s B ) <-> B <_s A ) ) with typecode |-
12 6 11 bitrd Could not format ( ph -> ( 0s <_s ( A -s B ) <-> B <_s A ) ) : No typesetting found for |- ( ph -> ( 0s <_s ( A -s B ) <-> B <_s A ) ) with typecode |-