Metamath Proof Explorer


Theorem subsin

Description: Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion subsin A B sin A sin B = 2 cos A + B 2 sin A B 2

Proof

Step Hyp Ref Expression
1 halfaddsubcl A B A + B 2 A B 2
2 coscl A + B 2 cos A + B 2
3 sincl A B 2 sin A B 2
4 mulcl cos A + B 2 sin A B 2 cos A + B 2 sin A B 2
5 2 3 4 syl2an A + B 2 A B 2 cos A + B 2 sin A B 2
6 1 5 syl A B cos A + B 2 sin A B 2
7 6 2timesd A B 2 cos A + B 2 sin A B 2 = cos A + B 2 sin A B 2 + cos A + B 2 sin A B 2
8 sinadd A + B 2 A B 2 sin A + B 2 + A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2
9 sinsub A + B 2 A B 2 sin A + B 2 A B 2 = sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
10 8 9 oveq12d A + B 2 A B 2 sin A + B 2 + A B 2 sin A + B 2 A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2 - sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
11 1 10 syl A B sin A + B 2 + A B 2 sin A + B 2 A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2 - sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
12 sincl A + B 2 sin A + B 2
13 coscl A B 2 cos A B 2
14 mulcl sin A + B 2 cos A B 2 sin A + B 2 cos A B 2
15 12 13 14 syl2an A + B 2 A B 2 sin A + B 2 cos A B 2
16 1 15 syl A B sin A + B 2 cos A B 2
17 16 6 6 pnncand A B sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2 - sin A + B 2 cos A B 2 cos A + B 2 sin A B 2 = cos A + B 2 sin A B 2 + cos A + B 2 sin A B 2
18 11 17 eqtrd A B sin A + B 2 + A B 2 sin A + B 2 A B 2 = cos A + B 2 sin A B 2 + cos A + B 2 sin A B 2
19 halfaddsub A B A + B 2 + A B 2 = A A + B 2 A B 2 = B
20 19 simpld A B A + B 2 + A B 2 = A
21 20 fveq2d A B sin A + B 2 + A B 2 = sin A
22 19 simprd A B A + B 2 A B 2 = B
23 22 fveq2d A B sin A + B 2 A B 2 = sin B
24 21 23 oveq12d A B sin A + B 2 + A B 2 sin A + B 2 A B 2 = sin A sin B
25 7 18 24 3eqtr2rd A B sin A sin B = 2 cos A + B 2 sin A B 2