Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
simpr |
|
3 |
|
subcl |
|
4 |
1 2 3
|
adddird |
|
5 |
|
subdi |
|
6 |
5
|
3anidm12 |
|
7 |
|
sqval |
|
8 |
7
|
adantr |
|
9 |
8
|
oveq1d |
|
10 |
6 9
|
eqtr4d |
|
11 |
2 1 2
|
subdid |
|
12 |
|
mulcom |
|
13 |
|
sqval |
|
14 |
13
|
adantl |
|
15 |
12 14
|
oveq12d |
|
16 |
11 15
|
eqtr4d |
|
17 |
10 16
|
oveq12d |
|
18 |
|
sqcl |
|
19 |
18
|
adantr |
|
20 |
|
mulcl |
|
21 |
|
sqcl |
|
22 |
21
|
adantl |
|
23 |
19 20 22
|
npncand |
|
24 |
4 17 23
|
3eqtrrd |
|