Metamath Proof Explorer


Theorem subsq0i

Description: The two solutions to the difference of squares set equal to zero. (Contributed by NM, 25-Apr-2006)

Ref Expression
Hypotheses binom2.1 A
binom2.2 B
Assertion subsq0i A 2 B 2 = 0 A = B A = B

Proof

Step Hyp Ref Expression
1 binom2.1 A
2 binom2.2 B
3 1 sqcli A 2
4 2 sqcli B 2
5 3 4 subeq0i A 2 B 2 = 0 A 2 = B 2
6 1 2 sqeqori A 2 = B 2 A = B A = B
7 5 6 bitri A 2 B 2 = 0 A = B A = B