Metamath Proof Explorer


Theorem subsub

Description: Law for double subtraction. (Contributed by NM, 13-May-2004)

Ref Expression
Assertion subsub A B C A B C = A - B + C

Proof

Step Hyp Ref Expression
1 subsub2 A B C A B C = A + C - B
2 addsubass A C B A + C - B = A + C - B
3 addsub A C B A + C - B = A - B + C
4 2 3 eqtr3d A C B A + C - B = A - B + C
5 4 3com23 A B C A + C - B = A - B + C
6 1 5 eqtrd A B C A B C = A - B + C