Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subsub
Next ⟩
nppcan2
Metamath Proof Explorer
Ascii
Unicode
Theorem
subsub
Description:
Law for double subtraction.
(Contributed by
NM
, 13-May-2004)
Ref
Expression
Assertion
subsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
-
B
+
C
Proof
Step
Hyp
Ref
Expression
1
subsub2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
+
C
-
B
2
addsubass
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
+
C
-
B
=
A
+
C
-
B
3
addsub
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
+
C
-
B
=
A
-
B
+
C
4
2
3
eqtr3d
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
+
C
-
B
=
A
-
B
+
C
5
4
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
C
-
B
=
A
-
B
+
C
6
1
5
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
-
B
+
C