Metamath Proof Explorer


Theorem subsub2

Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subsub2 ABCABC=A+C-B

Proof

Step Hyp Ref Expression
1 subcl BCBC
2 1 3adant1 ABCBC
3 simp1 ABCA
4 simp3 ABCC
5 simp2 ABCB
6 subcl CBCB
7 4 5 6 syl2anc ABCCB
8 2 3 7 add12d ABCBC+A+CB=A+BC+CB
9 npncan2 BCBC+C-B=0
10 9 3adant1 ABCBC+C-B=0
11 10 oveq2d ABCA+BC+CB=A+0
12 3 addridd ABCA+0=A
13 8 11 12 3eqtrd ABCBC+A+CB=A
14 3 7 addcld ABCA+C-B
15 subadd ABCA+C-BABC=A+C-BBC+A+CB=A
16 3 2 14 15 syl3anc ABCABC=A+C-BBC+A+CB=A
17 13 16 mpbird ABCABC=A+C-B