Metamath Proof Explorer


Theorem subsub4

Description: Law for double subtraction. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subsub4 A B C A - B - C = A B + C

Proof

Step Hyp Ref Expression
1 nppcan2 A B C A - B + C + C = A B
2 simp1 A B C A
3 simp2 A B C B
4 subcl A B A B
5 2 3 4 syl2anc A B C A B
6 simp3 A B C C
7 3 6 addcld A B C B + C
8 subcl A B + C A B + C
9 2 7 8 syl2anc A B C A B + C
10 subadd2 A B C A B + C A - B - C = A B + C A - B + C + C = A B
11 5 6 9 10 syl3anc A B C A - B - C = A B + C A - B + C + C = A B
12 1 11 mpbird A B C A - B - C = A B + C