Metamath Proof Explorer


Theorem subsubc

Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypothesis subsubc.d D = C cat H
Assertion subsubc H Subcat C J Subcat D J Subcat C J cat H

Proof

Step Hyp Ref Expression
1 subsubc.d D = C cat H
2 id J Subcat D J Subcat D
3 eqid Hom 𝑓 D = Hom 𝑓 D
4 2 3 subcssc J Subcat D J cat Hom 𝑓 D
5 eqid Base C = Base C
6 subcrcl H Subcat C C Cat
7 id H Subcat C H Subcat C
8 eqidd H Subcat C dom dom H = dom dom H
9 7 8 subcfn H Subcat C H Fn dom dom H × dom dom H
10 7 9 5 subcss1 H Subcat C dom dom H Base C
11 1 5 6 9 10 reschomf H Subcat C H = Hom 𝑓 D
12 11 breq2d H Subcat C J cat H J cat Hom 𝑓 D
13 4 12 syl5ibr H Subcat C J Subcat D J cat H
14 13 pm4.71rd H Subcat C J Subcat D J cat H J Subcat D
15 simpr H Subcat C J cat H J cat H
16 simpl H Subcat C J cat H H Subcat C
17 eqid Hom 𝑓 C = Hom 𝑓 C
18 16 17 subcssc H Subcat C J cat H H cat Hom 𝑓 C
19 ssctr J cat H H cat Hom 𝑓 C J cat Hom 𝑓 C
20 15 18 19 syl2anc H Subcat C J cat H J cat Hom 𝑓 C
21 12 biimpa H Subcat C J cat H J cat Hom 𝑓 D
22 20 21 2thd H Subcat C J cat H J cat Hom 𝑓 C J cat Hom 𝑓 D
23 16 adantr H Subcat C J cat H x dom dom J H Subcat C
24 9 adantr H Subcat C J cat H H Fn dom dom H × dom dom H
25 24 adantr H Subcat C J cat H x dom dom J H Fn dom dom H × dom dom H
26 eqid Id C = Id C
27 eqidd H Subcat C J cat H dom dom J = dom dom J
28 15 27 sscfn1 H Subcat C J cat H J Fn dom dom J × dom dom J
29 28 24 15 ssc1 H Subcat C J cat H dom dom J dom dom H
30 29 sselda H Subcat C J cat H x dom dom J x dom dom H
31 1 23 25 26 30 subcid H Subcat C J cat H x dom dom J Id C x = Id D x
32 31 eleq1d H Subcat C J cat H x dom dom J Id C x x J x Id D x x J x
33 32 ralbidva H Subcat C J cat H x dom dom J Id C x x J x x dom dom J Id D x x J x
34 1 oveq1i D cat J = C cat H cat J
35 6 adantr H Subcat C J cat H C Cat
36 dmexg H Subcat C dom H V
37 36 dmexd H Subcat C dom dom H V
38 37 adantr H Subcat C J cat H dom dom H V
39 35 24 28 38 29 rescabs H Subcat C J cat H C cat H cat J = C cat J
40 34 39 eqtr2id H Subcat C J cat H C cat J = D cat J
41 40 eleq1d H Subcat C J cat H C cat J Cat D cat J Cat
42 22 33 41 3anbi123d H Subcat C J cat H J cat Hom 𝑓 C x dom dom J Id C x x J x C cat J Cat J cat Hom 𝑓 D x dom dom J Id D x x J x D cat J Cat
43 eqid C cat J = C cat J
44 17 26 43 35 28 issubc3 H Subcat C J cat H J Subcat C J cat Hom 𝑓 C x dom dom J Id C x x J x C cat J Cat
45 eqid Id D = Id D
46 eqid D cat J = D cat J
47 1 7 subccat H Subcat C D Cat
48 47 adantr H Subcat C J cat H D Cat
49 3 45 46 48 28 issubc3 H Subcat C J cat H J Subcat D J cat Hom 𝑓 D x dom dom J Id D x x J x D cat J Cat
50 42 44 49 3bitr4rd H Subcat C J cat H J Subcat D J Subcat C
51 50 pm5.32da H Subcat C J cat H J Subcat D J cat H J Subcat C
52 14 51 bitrd H Subcat C J Subcat D J cat H J Subcat C
53 52 biancomd H Subcat C J Subcat D J Subcat C J cat H