| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzo0 |
|
| 2 |
|
elfzo0 |
|
| 3 |
|
nnre |
|
| 4 |
3
|
3ad2ant2 |
|
| 5 |
|
nn0re |
|
| 6 |
5
|
adantr |
|
| 7 |
|
resubcl |
|
| 8 |
4 6 7
|
syl2anr |
|
| 9 |
|
nn0re |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
10
|
adantl |
|
| 12 |
|
lenlt |
|
| 13 |
12
|
bicomd |
|
| 14 |
8 11 13
|
syl2anc |
|
| 15 |
14
|
biimpa |
|
| 16 |
|
nnz |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
|
nn0z |
|
| 19 |
18
|
adantr |
|
| 20 |
|
zsubcl |
|
| 21 |
17 19 20
|
syl2anr |
|
| 22 |
|
ltle |
|
| 23 |
5 4 22
|
syl2an |
|
| 24 |
23
|
impancom |
|
| 25 |
24
|
imp |
|
| 26 |
|
subge0 |
|
| 27 |
4 6 26
|
syl2anr |
|
| 28 |
25 27
|
mpbird |
|
| 29 |
|
elnn0z |
|
| 30 |
21 28 29
|
sylanbrc |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simplr1 |
|
| 33 |
|
nn0sub |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
15 34
|
mpbid |
|
| 36 |
|
elnn0uz |
|
| 37 |
35 36
|
sylib |
|
| 38 |
19
|
adantr |
|
| 39 |
38
|
adantr |
|
| 40 |
9
|
adantr |
|
| 41 |
40
|
adantl |
|
| 42 |
3
|
adantl |
|
| 43 |
42
|
adantl |
|
| 44 |
42 5 7
|
syl2anr |
|
| 45 |
41 43 44
|
ltsub1d |
|
| 46 |
|
nncn |
|
| 47 |
46
|
adantl |
|
| 48 |
|
nn0cn |
|
| 49 |
|
nncan |
|
| 50 |
47 48 49
|
syl2anr |
|
| 51 |
50
|
breq2d |
|
| 52 |
51
|
biimpd |
|
| 53 |
45 52
|
sylbid |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
adantr |
|
| 56 |
55
|
com3l |
|
| 57 |
56
|
3impia |
|
| 58 |
57
|
impcom |
|
| 59 |
58
|
adantr |
|
| 60 |
37 39 59
|
3jca |
|
| 61 |
60
|
exp31 |
|
| 62 |
2 61
|
biimtrid |
|
| 63 |
62
|
3adant2 |
|
| 64 |
1 63
|
sylbi |
|
| 65 |
64
|
3imp |
|
| 66 |
|
elfzo2 |
|
| 67 |
65 66
|
sylibr |
|